cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A060265 Largest prime less than 2n.

Original entry on oeis.org

3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131
Offset: 2

Views

Author

Labos Elemer, Mar 23 2001

Keywords

Comments

a(n) = A007917(2*n) = A255313(n-1,1) = A255316(n-1,1) = A006530(A255427(n)). - Reinhard Zumkeller, Feb 22 2015

Crossrefs

Apart from initial term, same as A060308.

Programs

  • Haskell
    a060265 = a007917 . (* 2)  -- Reinhard Zumkeller, Feb 22 2015
  • Maple
    seq (prevprime(2*i+1), i=2..256);
  • Mathematica
    Table[NextPrime[2 n, -1], {n, 2, 66}] (* Michael De Vlieger, Jul 04 2016 *)
  • PARI
    a(n) = precprime(2*n-1) \\ Harry J. Smith, Jul 03 2009
    

A226078 Table read by rows: prime power factors of central binomial coefficients, cf. A000984.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 2, 5, 7, 4, 9, 7, 4, 3, 7, 11, 8, 3, 11, 13, 2, 9, 5, 11, 13, 4, 5, 11, 13, 17, 4, 11, 13, 17, 19, 8, 3, 7, 13, 17, 19, 4, 7, 13, 17, 19, 23, 8, 25, 7, 17, 19, 23, 8, 27, 25, 17, 19, 23, 16, 9, 5, 17, 19, 23, 29, 2, 9, 5, 17, 19, 23, 29, 31
Offset: 0

Views

Author

Reinhard Zumkeller, May 25 2013

Keywords

Examples

			.   n        initial rows               A000984(n)   A226047(n)
.  ---+------------------------------+-------------+------------
.   0   [1]                                      1
.   1   [2]                                      2            2
.   2   [2,3]                                    6            3
.   3   [4,5]                                   20            5
.   4   [2,5,7]                                 70            7
.   5   [4,9,7]                                252            9
.   6   [4,3,7,11]                             924           11
.   7   [8,3,11,13]                           3432           13
.   8   [2,9,5,11,13]                        12870           13
.   9   [4,5,11,13,17]                       48620           17
.  10   [4,11,13,17,19]                     184756           19
.  11   [8,3,7,13,17,19]                    705432           19
.  12   [4,7,13,17,19,23]                  2704156           23
.  13   [8,25,7,17,19,23]                 10400600           25
.  14   [8,27,25,17,19,23]                40116600           27
.  15   [16,9,5,17,19,23,29]             155117520           29
.  16   [2,9,5,17,19,23,29,31]           601080390           31
.  17   [4,27,5,11,19,23,29,31]         2333606220           31
.  18   [4,3,25,7,11,19,23,29,31]       9075135300           31
.  19   [8,3,25,7,11,23,29,31,37]      35345263800           37
.  20   [4,9,5,7,11,13,23,29,31,37]   137846528820           37 .
		

Crossrefs

Cf. A067434 (row lengths), A001316 (left edge), A060308 (right edge), A226047 (row maxima), A226083 (row minima), A000984 (row products).
Cf. A267823.

Programs

  • Haskell
    a226078 n k = a226078_tabf !! n !! k
    a226078_row n = a226078_tabf !! n
    a226078_tabf = map a141809_row a000984_list
    
  • Maple
    f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
    b:= proc(n) local p;
          p:= add(f(n+i) -f(i), i=1..n);
          seq(`if`(coeff(p, x, i)>0,
                 i^coeff(p, x, i), NULL), i=1..degree(p))
        end:
    T:= n-> `if`(n=0, 1, b(n)):
    seq(T(n), n=0..30);  # Alois P. Heinz, May 25 2013
  • Mathematica
    Table[Power @@@ FactorInteger[(2n)!/n!^2] , {n, 0, 30}] // Flatten (* Jean-François Alcover, Jul 29 2015 *)
  • PARI
    row(n)= if(n<1, [1], [ e[1]^e[2] |e<-Col(factor(binomial(2*n, n)))]); \\ Ruud H.G. van Tol, Nov 18 2024

Formula

T(n,k) = A141809(A000984(n),k) for k = 0..A067434(n)-1.

A118750 a(n) = product[k=1..n] P(k), where P(k) is the largest prime <= 3*k. a(n) = product[k=1..n] A118749(k).

Original entry on oeis.org

3, 15, 105, 1155, 15015, 255255, 4849845, 111546435, 2565568005, 74401472145, 2306445636495, 71499814731345, 2645493145059765, 108465218947450365, 4664004414740365695, 219208207492797187665, 10302785752161467820255
Offset: 1

Views

Author

Jonathan Vos Post, Apr 29 2006

Keywords

Comments

Differs from (after first term) A048599 "Partial products of the sequence (A001097) of twin primes" after 8th term. Differs from (after first term) A070826 "One half of product of first n primes A000040" after 9th term. Analogous to A118455 a(1)=1. a(n) = product{k=1..n} P(k), where P(k) is the largest prime <= k.

Crossrefs

A118752 a(n) = product[k=0..n] P(k), where P(k) is the smallest prime > 3*n. a(n) = product[k=0..n] A118751(k).

Original entry on oeis.org

2, 10, 70, 770, 10010, 170170, 3233230, 74364290, 2156564410, 62540367890, 1938751404590, 71733801969830, 2654150672883710, 108820177588232110, 4679267636293980730, 219925578905817094310, 11656055682008305998430
Offset: 0

Views

Author

Jonathan Vos Post, Apr 29 2006

Keywords

Comments

Analogous to A118456 a(n) = product{k=1..n} P(k), where P(k) is the smallest prime >= k.

Crossrefs

Programs

  • Mathematica
    Rest[FoldList[Times,1,Table[NextPrime[3n],{n,0,20}]]] (* Harvey P. Dale, Mar 09 2014 *)

Extensions

Definition corrected by Harvey P. Dale, Mar 09 2014

A120303 Largest prime factor of Catalan number A000108(n).

Original entry on oeis.org

2, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131, 131
Offset: 2

Views

Author

Alexander Adamchuk, Jul 13 2006

Keywords

Comments

All prime numbers (except 3) are present in this sequence in their natural order with repetition. The number of repetitions is equal to A028334(n): differences between consecutive primes, divided by 2. - Alexander Adamchuk, Jul 30 2006
For p>3 a((p+1)/2) = p and all a(n) = p for n >= (p+1)/2 until the first occurrence of the next prime q = NextPrime(p) at a((q+1)/2) = q. - Alexander Adamchuk, Dec 27 2013
For n>2, a(n) is the largest prime less than 2*n. - Gennady Eremin, Mar 02 2021

Examples

			G.f. = 2*x^2 + 5*x^3 + 7*x^4 + 7*x^5 + 11*x^6 + 13*x^7 + 13*x^8 + 17*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Max[FactorInteger[(2n)!/n!/(n+1)! ]],{n,2,100}]
    FactorInteger[CatalanNumber[#]][[-1,1]]&/@Range[2,70] (* Harvey P. Dale, May 02 2017 *)
  • PARI
    a(n) = vecmax(factor(binomial(2*n, n)/(n+1))[,1]); \\ Michel Marcus, Nov 14 2015
    
  • PARI
    a(n)=if(n>2,precprime(2*n),2) \\ Charles R Greathouse IV, Nov 17 2015
    
  • Python
    from gmpy2 import is_prime
    A120303 = [2]
    for n in range(3, 801):
        for k in range(2*n-1, n, -2):
            if is_prime(k, n):
                A120303.append(k)
                break
    for n in range(len(A120303)):
        print(n+2, A120303[n])  # Gennady Eremin, Mar 17 2021

Formula

a(n) = A060308(n) = A060265(n) for n>2.
a(n) = A006530(A000108(n)). - Michel Marcus, Nov 14 2015
G.f.: A(x) - x^2, where A(x) is the g.f. of A060265. - Gennady Eremin, Mar 02 2021

A224911 Greatest prime dividing A190339(n).

Original entry on oeis.org

2, 3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131, 131
Offset: 0

Views

Author

Paul Curtz, Apr 19 2013

Keywords

Comments

It appears that a(n) = A060308(n+1), verified for n <=420. - R. J. Mathar, Apr 28 2013
This appears to be a sequence of nondecreasing primes containing each prime at least once.
We might also consider a sequence b(n) defined by 2 followed by A006094(n): 2, 6, 15, 35, 77, 143, 221, ... . A190339(n) is also divisible by a stuttered version of b(n), namely by the sequence 2, 6, 15, 35, 35, 77, 143, 143, ... .

Examples

			a(0) = 6/2 = 3, a(1) = 15/3 = 5, a(2) = 105/15 = 7, a(3) = 105/15 = 7, a(4) = 231/21 = 11.
		

Crossrefs

Programs

  • Maple
    A224911 := proc(n)
        A006530(A190339(n)) ;
    end proc: # R. J. Mathar, Apr 25 2013
  • Mathematica
    nmax = 67; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; FactorInteger[#][[-1, 1]]& /@ Denominator[Diagonal[diff]] (* Jean-François Alcover, Mar 03 2014 *)

Formula

a(n) = A006530(A190339(n)).

A226047 Largest prime power dividing binomial(2n, n).

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 13, 17, 19, 19, 23, 25, 27, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 49, 49, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 81, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113
Offset: 1

Views

Author

Keywords

Comments

The first indices n for which a(n) < a(n-1) are 123, 315, 366, 671, 1095, 1098, 1204, 1565, 6095, 7326, 9843, 39065, 58828, 88575, 88578, 195315, 195320, 265722, 265725 and 709937. - Giovanni Resta, May 24 2013
a(n) = maximum of n-th row in A226078. - Reinhard Zumkeller, May 25 2013

Examples

			Binomial(10, 5) = 2^2 * 3^2 * 7 and so a(5) = max({2^2, 3^2, 7}) = 3^2.
		

Crossrefs

Programs

  • Haskell
    a226047 = maximum . a226078_row  -- Reinhard Zumkeller, May 25 2013
  • Maple
    f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
    a:= proc(n) local p;
          p:= add(f(n+i) -f(i), i=1..n);
          max(seq(i^coeff(p, x, i), i=1..degree(p)))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, May 24 2013
  • Mathematica
    cnt[n_, p_] := (n - Total@IntegerDigits[n, p])/(p-1); a[n_] := Block[{k = 2*n, p, e}, While[! PrimePowerQ[k] || ({p, e} = FactorInteger[k][[1]]; cnt[2*n , p] - 2 cnt[n, p] != e), k--]; k]; Array[a, 60] (* Giovanni Resta, May 24 2013 *)
    Table[Max[Select[Divisors[Binomial[2 n,n]],PrimePowerQ]],{n,60}] (* Harvey P. Dale, Feb 26 2024 *)
  • PARI
    ord(n,p)=my(s);while(n\=p,s+=n);s
    a(n)=my(p=precprime(2*n));forstep(k=2*n,p+1,-1, my(q,e=isprimepower(k, &q)); if(e && e == ord(2*n,q)-2*ord(n,q), return(k)));p /* requires PARI v.2.5 or later */
    
  • PARI
    A226047(n)={for(k=2,#n=factor(binomial(2*n,n))~,factorback(n[,k-1]~)>factorback(n[,k]~) && n[,k]=n[,k-1]);factorback(n[,#n]~)} \\ highly unoptimized, not suitable for n>>10^4. - M. F. Hasler, May 24 2013
    

Formula

Erdős proved that a(n) <= 2n.

A118751 Smallest prime >= 3*n.

Original entry on oeis.org

2, 5, 7, 11, 13, 17, 19, 23, 29, 29, 31, 37, 37, 41, 43, 47, 53, 53, 59, 59, 61, 67, 67, 71, 73, 79, 79, 83, 89, 89, 97, 97, 97, 101, 103, 107, 109, 113, 127, 127, 127, 127, 127, 131, 137, 137, 139, 149, 149, 149, 151, 157, 157, 163, 163, 167, 173, 173, 179, 179, 181
Offset: 0

Views

Author

Jonathan Vos Post, Apr 29 2006

Keywords

Crossrefs

Analogous to A060264 = first prime after 2n.

A118749 Largest prime <= 3*n.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 23, 29, 31, 31, 37, 41, 43, 47, 47, 53, 53, 59, 61, 61, 67, 71, 73, 73, 79, 83, 83, 89, 89, 89, 97, 101, 103, 107, 109, 113, 113, 113, 113, 113, 127, 131, 131, 137, 139, 139, 139, 149, 151, 151, 157, 157, 163, 167, 167, 173, 173, 179, 181
Offset: 1

Views

Author

Jonathan Vos Post, Apr 29 2006

Keywords

Comments

Analogous to A060308 largest prime <= 2*k.

Crossrefs

Cf. A007917 (largest prime <= n), A008585 (3n).
Essentially the same as A081259.

Programs

  • Magma
    [NthPrime(#PrimesUpTo(3*n)): n in [1..100]]; // Vincenzo Librandi, Nov 25 2015
    
  • Mathematica
    Table[Max[FactorInteger[(3 n)!/(n!)^3]], {n, 1, 70}] (* Vincenzo Librandi, Nov 25 2015 *)
    NextPrime[3*Range[70]+1,-1] (* Harvey P. Dale, Nov 12 2017 *)
  • PARI
    vector(100, n, precprime(3*n)) \\ Altug Alkan, Nov 25 2015

Formula

a(n) = A007917(A008585(n)). - Michel Marcus, Nov 25 2015

A118754 Smallest prime >= 5*n.

Original entry on oeis.org

2, 5, 11, 17, 23, 29, 31, 37, 41, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 97, 101, 107, 113, 127, 127, 127, 131, 137, 149, 149, 151, 157, 163, 167, 173, 179, 181, 191, 191, 197, 211, 211, 211, 223, 223, 227, 233, 239, 241, 251, 251, 257, 263, 269, 271, 277, 281
Offset: 0

Views

Author

Jonathan Vos Post, Apr 29 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[PrimeQ[5n],5n,NextPrime[5n]],{n,0,60}] (* Harvey P. Dale, Nov 29 2024 *)
  • PARI
    a(n) = nextprime(5*n); \\ Michel Marcus, Feb 13 2021

Formula

a(n) = A007918(A008587(n)). - Michel Marcus, Feb 13 2021
Previous Showing 11-20 of 29 results. Next