A060265
Largest prime less than 2n.
Original entry on oeis.org
3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131
Offset: 2
Apart from initial term, same as
A060308.
A226078
Table read by rows: prime power factors of central binomial coefficients, cf. A000984.
Original entry on oeis.org
1, 2, 2, 3, 4, 5, 2, 5, 7, 4, 9, 7, 4, 3, 7, 11, 8, 3, 11, 13, 2, 9, 5, 11, 13, 4, 5, 11, 13, 17, 4, 11, 13, 17, 19, 8, 3, 7, 13, 17, 19, 4, 7, 13, 17, 19, 23, 8, 25, 7, 17, 19, 23, 8, 27, 25, 17, 19, 23, 16, 9, 5, 17, 19, 23, 29, 2, 9, 5, 17, 19, 23, 29, 31
Offset: 0
. n initial rows A000984(n) A226047(n)
. ---+------------------------------+-------------+------------
. 0 [1] 1
. 1 [2] 2 2
. 2 [2,3] 6 3
. 3 [4,5] 20 5
. 4 [2,5,7] 70 7
. 5 [4,9,7] 252 9
. 6 [4,3,7,11] 924 11
. 7 [8,3,11,13] 3432 13
. 8 [2,9,5,11,13] 12870 13
. 9 [4,5,11,13,17] 48620 17
. 10 [4,11,13,17,19] 184756 19
. 11 [8,3,7,13,17,19] 705432 19
. 12 [4,7,13,17,19,23] 2704156 23
. 13 [8,25,7,17,19,23] 10400600 25
. 14 [8,27,25,17,19,23] 40116600 27
. 15 [16,9,5,17,19,23,29] 155117520 29
. 16 [2,9,5,17,19,23,29,31] 601080390 31
. 17 [4,27,5,11,19,23,29,31] 2333606220 31
. 18 [4,3,25,7,11,19,23,29,31] 9075135300 31
. 19 [8,3,25,7,11,23,29,31,37] 35345263800 37
. 20 [4,9,5,7,11,13,23,29,31,37] 137846528820 37 .
-
a226078 n k = a226078_tabf !! n !! k
a226078_row n = a226078_tabf !! n
a226078_tabf = map a141809_row a000984_list
-
f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
b:= proc(n) local p;
p:= add(f(n+i) -f(i), i=1..n);
seq(`if`(coeff(p, x, i)>0,
i^coeff(p, x, i), NULL), i=1..degree(p))
end:
T:= n-> `if`(n=0, 1, b(n)):
seq(T(n), n=0..30); # Alois P. Heinz, May 25 2013
-
Table[Power @@@ FactorInteger[(2n)!/n!^2] , {n, 0, 30}] // Flatten (* Jean-François Alcover, Jul 29 2015 *)
-
row(n)= if(n<1, [1], [ e[1]^e[2] |e<-Col(factor(binomial(2*n, n)))]); \\ Ruud H.G. van Tol, Nov 18 2024
A118750
a(n) = product[k=1..n] P(k), where P(k) is the largest prime <= 3*k. a(n) = product[k=1..n] A118749(k).
Original entry on oeis.org
3, 15, 105, 1155, 15015, 255255, 4849845, 111546435, 2565568005, 74401472145, 2306445636495, 71499814731345, 2645493145059765, 108465218947450365, 4664004414740365695, 219208207492797187665, 10302785752161467820255
Offset: 1
A118752
a(n) = product[k=0..n] P(k), where P(k) is the smallest prime > 3*n. a(n) = product[k=0..n] A118751(k).
Original entry on oeis.org
2, 10, 70, 770, 10010, 170170, 3233230, 74364290, 2156564410, 62540367890, 1938751404590, 71733801969830, 2654150672883710, 108820177588232110, 4679267636293980730, 219925578905817094310, 11656055682008305998430
Offset: 0
-
Rest[FoldList[Times,1,Table[NextPrime[3n],{n,0,20}]]] (* Harvey P. Dale, Mar 09 2014 *)
A120303
Largest prime factor of Catalan number A000108(n).
Original entry on oeis.org
2, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131, 131
Offset: 2
G.f. = 2*x^2 + 5*x^3 + 7*x^4 + 7*x^5 + 11*x^6 + 13*x^7 + 13*x^8 + 17*x^9 + ...
-
Table[Max[FactorInteger[(2n)!/n!/(n+1)! ]],{n,2,100}]
FactorInteger[CatalanNumber[#]][[-1,1]]&/@Range[2,70] (* Harvey P. Dale, May 02 2017 *)
-
a(n) = vecmax(factor(binomial(2*n, n)/(n+1))[,1]); \\ Michel Marcus, Nov 14 2015
-
a(n)=if(n>2,precprime(2*n),2) \\ Charles R Greathouse IV, Nov 17 2015
-
from gmpy2 import is_prime
A120303 = [2]
for n in range(3, 801):
for k in range(2*n-1, n, -2):
if is_prime(k, n):
A120303.append(k)
break
for n in range(len(A120303)):
print(n+2, A120303[n]) # Gennady Eremin, Mar 17 2021
A224911
Greatest prime dividing A190339(n).
Original entry on oeis.org
2, 3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 47, 47, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 79, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113, 113, 113, 113, 127, 127, 131, 131
Offset: 0
a(0) = 6/2 = 3, a(1) = 15/3 = 5, a(2) = 105/15 = 7, a(3) = 105/15 = 7, a(4) = 231/21 = 11.
-
A224911 := proc(n)
A006530(A190339(n)) ;
end proc: # R. J. Mathar, Apr 25 2013
-
nmax = 67; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; FactorInteger[#][[-1, 1]]& /@ Denominator[Diagonal[diff]] (* Jean-François Alcover, Mar 03 2014 *)
A226047
Largest prime power dividing binomial(2n, n).
Original entry on oeis.org
2, 3, 5, 7, 9, 11, 13, 13, 17, 19, 19, 23, 25, 27, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 49, 49, 53, 53, 53, 59, 61, 61, 61, 67, 67, 71, 73, 73, 73, 79, 81, 83, 83, 83, 89, 89, 89, 89, 97, 97, 101, 103, 103, 107, 109, 109, 113, 113, 113, 113
Offset: 1
Binomial(10, 5) = 2^2 * 3^2 * 7 and so a(5) = max({2^2, 3^2, 7}) = 3^2.
-
a226047 = maximum . a226078_row -- Reinhard Zumkeller, May 25 2013
-
f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
a:= proc(n) local p;
p:= add(f(n+i) -f(i), i=1..n);
max(seq(i^coeff(p, x, i), i=1..degree(p)))
end:
seq(a(n), n=1..60); # Alois P. Heinz, May 24 2013
-
cnt[n_, p_] := (n - Total@IntegerDigits[n, p])/(p-1); a[n_] := Block[{k = 2*n, p, e}, While[! PrimePowerQ[k] || ({p, e} = FactorInteger[k][[1]]; cnt[2*n , p] - 2 cnt[n, p] != e), k--]; k]; Array[a, 60] (* Giovanni Resta, May 24 2013 *)
Table[Max[Select[Divisors[Binomial[2 n,n]],PrimePowerQ]],{n,60}] (* Harvey P. Dale, Feb 26 2024 *)
-
ord(n,p)=my(s);while(n\=p,s+=n);s
a(n)=my(p=precprime(2*n));forstep(k=2*n,p+1,-1, my(q,e=isprimepower(k, &q)); if(e && e == ord(2*n,q)-2*ord(n,q), return(k)));p /* requires PARI v.2.5 or later */
-
A226047(n)={for(k=2,#n=factor(binomial(2*n,n))~,factorback(n[,k-1]~)>factorback(n[,k]~) && n[,k]=n[,k-1]);factorback(n[,#n]~)} \\ highly unoptimized, not suitable for n>>10^4. - M. F. Hasler, May 24 2013
A118751
Smallest prime >= 3*n.
Original entry on oeis.org
2, 5, 7, 11, 13, 17, 19, 23, 29, 29, 31, 37, 37, 41, 43, 47, 53, 53, 59, 59, 61, 67, 67, 71, 73, 79, 79, 83, 89, 89, 97, 97, 97, 101, 103, 107, 109, 113, 127, 127, 127, 127, 127, 131, 137, 137, 139, 149, 149, 149, 151, 157, 157, 163, 163, 167, 173, 173, 179, 179, 181
Offset: 0
Analogous to
A060264 = first prime after 2n.
A118749
Largest prime <= 3*n.
Original entry on oeis.org
3, 5, 7, 11, 13, 17, 19, 23, 23, 29, 31, 31, 37, 41, 43, 47, 47, 53, 53, 59, 61, 61, 67, 71, 73, 73, 79, 83, 83, 89, 89, 89, 97, 101, 103, 107, 109, 113, 113, 113, 113, 113, 127, 131, 131, 137, 139, 139, 139, 149, 151, 151, 157, 157, 163, 167, 167, 173, 173, 179, 181
Offset: 1
-
[NthPrime(#PrimesUpTo(3*n)): n in [1..100]]; // Vincenzo Librandi, Nov 25 2015
-
Table[Max[FactorInteger[(3 n)!/(n!)^3]], {n, 1, 70}] (* Vincenzo Librandi, Nov 25 2015 *)
NextPrime[3*Range[70]+1,-1] (* Harvey P. Dale, Nov 12 2017 *)
-
vector(100, n, precprime(3*n)) \\ Altug Alkan, Nov 25 2015
A118754
Smallest prime >= 5*n.
Original entry on oeis.org
2, 5, 11, 17, 23, 29, 31, 37, 41, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 97, 101, 107, 113, 127, 127, 127, 131, 137, 149, 149, 151, 157, 163, 167, 173, 179, 181, 191, 191, 197, 211, 211, 211, 223, 223, 227, 233, 239, 241, 251, 251, 257, 263, 269, 271, 277, 281
Offset: 0
Comments