cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 55 results. Next

A195088 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 4.

Original entry on oeis.org

32, 96, 144, 160, 216, 224, 243, 324, 352, 400, 416, 480, 486, 544, 608, 672, 720, 736, 784, 928, 992, 1000, 1008, 1056, 1080, 1120, 1184, 1200, 1215, 1248, 1312, 1376, 1504, 1512, 1584, 1620, 1632, 1696, 1701, 1760, 1800, 1824, 1872, 1888, 1936, 1952
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0237194..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195088 n = a195088_list !! (n-1)
    a195088_list = filter ((== 4) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[2000],PrimeOmega[#]-PrimeNu[#]==4&]
  • PARI
    is(n)=bigomega(n)-omega(n)==4 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 4. - Reinhard Zumkeller, Nov 29 2015

A195090 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 6.

Original entry on oeis.org

128, 384, 576, 640, 864, 896, 1296, 1408, 1600, 1664, 1920, 1944, 2176, 2187, 2432, 2688, 2880, 2916, 2944, 3136, 3712, 3968, 4000, 4032, 4224, 4320, 4374, 4480, 4736, 4800, 4992, 5248, 5504, 6016, 6048, 6336, 6480, 6528, 6784
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0059189..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195090 n = a195090_list !! (n-1)
    a195090_list = filter ((== 6) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Maple
    op(select(n->bigomega(n)-nops(factorset(n))=6, [$1..6784])); # Paolo P. Lava, Jul 03 2018
  • Mathematica
    Select[Range[7000],PrimeOmega[#]-PrimeNu[#]==6&]
  • PARI
    is(n)=bigomega(n)-omega(n)==6 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 6. - Reinhard Zumkeller, Nov 29 2015

A195092 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 8.

Original entry on oeis.org

512, 1536, 2304, 2560, 3456, 3584, 5184, 5632, 6400, 6656, 7680, 7776, 8704, 9728, 10752, 11520, 11664, 11776, 12544, 14848, 15872, 16000, 16128, 16896, 17280, 17496, 17920, 18944, 19200, 19683, 19968, 20992, 22016, 24064, 24192
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0014793..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195092 n = a195092_list !! (n-1)
    a195092_list = filter ((== 8) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[25000],PrimeOmega[#]-PrimeNu[#]==8&]
  • PARI
    is(n)=bigomega(n)-omega(n)==8 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 8. - Reinhard Zumkeller, Nov 29 2015

A195093 Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 9.

Original entry on oeis.org

1024, 3072, 4608, 5120, 6912, 7168, 10368, 11264, 12800, 13312, 15360, 15552, 17408, 19456, 21504, 23040, 23328, 23552, 25088, 29696, 31744, 32000, 32256, 33792, 34560, 34992, 35840, 37888, 38400, 39936, 41984, 44032, 48128, 48384
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2011

Keywords

Comments

The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0007396..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024

Crossrefs

Programs

  • Haskell
    a195093 n = a195093_list !! (n-1)
    a195093_list = filter ((== 9) . a046660) [1..]
    -- Reinhard Zumkeller, Nov 29 2015
  • Mathematica
    Select[Range[50000],PrimeOmega[#]-PrimeNu[#]==9&]
  • PARI
    is(n)=bigomega(n)-omega(n)==9 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

A046660(a(n)) = 9. - Reinhard Zumkeller, Nov 29 2015

A082293 Numbers having exactly one square divisor > 1.

Original entry on oeis.org

4, 8, 9, 12, 18, 20, 24, 25, 27, 28, 40, 44, 45, 49, 50, 52, 54, 56, 60, 63, 68, 75, 76, 84, 88, 90, 92, 98, 99, 104, 116, 117, 120, 121, 124, 125, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 164, 168, 169, 171, 172, 175, 184, 188, 189, 198, 204, 207, 212
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 08 2003

Keywords

Comments

Numbers of the form m*p^2, p prime and m squarefree (A005117). [Corrected by Peter Munn, Nov 17 2020]
The asymptotic density of this sequence is (6/Pi^2)*Sum_{n>=1} 1/prime(n)^2 = 0.274933... (A222056). - Amiram Eldar, Jul 07 2020

Crossrefs

Complement of A048111 within A013929.
Subsequence of A252849.
Disjoint union of A048109 and A060687.
A285508 is a subsequence.

Programs

  • Mathematica
    Select[Range[2, 200], MemberQ[{2, 3}, (e = Sort[FactorInteger[#][[;; , 2]]])[[-1]]] && (Length[e] == 1 || e[[-2]] == 1) &] (* Amiram Eldar, Jul 07 2020 *)
  • PARI
    is(n)=my(f=vecsort(factor(n)[,2],,4)); #f && f[1]>1 && f[1]<4 && (#f==1 || f[2]==1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, primerange
    def A082293(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return int(n+x-sum(g(x//p**2) for p in primerange(isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025

Formula

A046951(a(n)) = 2.

A072357 Cubefree nonsquares whose factorization into a product of primes contains exactly one square.

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 75, 76, 84, 90, 92, 98, 99, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 188, 198, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 260, 261, 268, 275, 276, 279, 284, 292, 294, 306, 308
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2002

Keywords

Comments

Numbers n such that A001222(n) - A001221(n) = 1 and A001221(n)>1.
Numbers with one or more 1's, exactly one 2 and no 3's or higher in their prime exponents. - Antti Karttunen, Sep 19 2019
From Salvador Cerdá, Mar 08 2016: (Start)
12!+1 = 13^2 * 2834329 is in this sequence.
23!+1 = 47^2 * 79 * 148139754736864591 is also in this sequence. (End)
The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} 1/(p*(p+1)) (A271971). - Amiram Eldar, Nov 09 2020

Examples

			a(14) = 84 = 7*3*2^2; the following numbers are not terms: 36=6^2, as it is a square; 54=2*3^3, as it is not cubefree; 42=2*3*7, as there is no squared prime; 72=2*6^2, as 72 has two squared prime divisors: 2^2 and 3^2.
		

Crossrefs

Cf. A001221, A001222, A054753 (subsequence), A271971, A325981 (conjectured subsequence).
Subsequence of: A004709, A048107, A060687, A067259.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, [$2..floor(N^(1/2))]):
    SF:= select(numtheory:-issqrfree, [$2..N/4]):
    S:= {seq(op(map(p -> p^2*t, select(s -> igcd(s,t)=1 and s^2*t <= N, Primes))), t = SF)}:
    sort(convert(S,list)); # Robert Israel, Mar 08 2016
  • Mathematica
    Select[Range@ 308, And[PrimeNu@ # > 1, PrimeOmega@ # - PrimeNu@ # == 1] &] (* Michael De Vlieger, Mar 09 2016 *)
  • PARI
    isok(n) = (omega(n) > 1) && (bigomega(n) - omega(n) == 1); \\ Michel Marcus, Jul 16 2015

A325196 Heinz numbers of integer partitions such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1.

Original entry on oeis.org

3, 4, 9, 10, 12, 15, 18, 20, 42, 45, 50, 60, 63, 70, 75, 84, 90, 100, 105, 126, 140, 150, 294, 315, 330, 350, 420, 441, 462, 490, 495, 525, 550, 588, 630, 660, 693, 700, 735, 770, 825, 882, 924, 980, 990, 1050, 1100, 1155, 1386, 1470, 1540, 1650, 2730, 3234
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325191.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    4: {1,1}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   42: {1,2,4}
   45: {2,2,3}
   50: {1,3,3}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   75: {2,3,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
  100: {1,1,3,3}
  105: {2,3,4}
  126: {1,2,2,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Select[Range[1000],otbmax[primeptn[#]]-otb[primeptn[#]]==1&]

A325191 Number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1.

Original entry on oeis.org

0, 0, 2, 0, 3, 3, 0, 4, 6, 4, 0, 5, 10, 10, 5, 0, 6, 15, 20, 15, 6, 0, 7, 21, 35, 35, 21, 7, 0, 8, 28, 56, 70, 56, 28, 8, 0, 9, 36, 84, 126, 126, 84, 36, 9, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 0, 11, 55, 165, 330, 462
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325196.
Under the Bulgarian solitaire step, these partitions form cycles of length >= 2. Length >= 2 means not the length=1 self-loop which occurs from the triangular partition when n is a triangular number. See A074909 for self-loops included. - Kevin Ryde, Sep 27 2019

Examples

			The a(2) = 2 through a(12) = 10 partitions (empty columns not shown):
  (2)   (22)   (32)   (322)   (332)   (432)   (4322)   (4332)
  (11)  (31)   (221)  (331)   (422)   (3321)  (4331)   (4422)
        (211)  (311)  (421)   (431)   (4221)  (4421)   (4431)
                      (3211)  (3221)  (4311)  (5321)   (5322)
                              (3311)          (43211)  (5331)
                              (4211)                   (5421)
                                                       (43221)
                                                       (43311)
                                                       (44211)
                                                       (53211)
		

Crossrefs

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otb[#]+1==otbmax[#]&]],{n,0,30}]
  • PARI
    a(n) = my(t=ceil(sqrtint(8*n+1)/2), r=n-t*(t-1)/2); if(r==0,0, binomial(t,r)); \\ Kevin Ryde, Sep 27 2019

Formula

Positions of zeros are A000217 = n * (n + 1) / 2.
a(n) = A074909(n) - A010054(n). - Kevin Ryde, Sep 27 2019

A350322 Abelian orders m for which there exist exactly 2 groups of order m.

Original entry on oeis.org

4, 9, 25, 45, 49, 99, 121, 153, 169, 175, 207, 245, 261, 289, 325, 361, 369, 423, 425, 475, 477, 529, 531, 539, 575, 637, 639, 725, 747, 765, 801, 833, 841, 845, 847, 909, 925, 931, 961, 963, 1017, 1035, 1075, 1127, 1175, 1179, 1233, 1305, 1325, 1341, 1369, 1445, 1475
Offset: 1

Views

Author

Jianing Song, Dec 25 2021

Keywords

Comments

Abelian orders of the form p^2 * q_1 * q_2 * ... * q_s, where p, q_1, q_2, ..., q_s are distinct primes such that p^2 !== 1 (mod q_j), q_i !== 1 (mod p_j), q_i !== 1 (mod q_j) for i != j. In this case there are 2^r groups of order m.
Note that the smallest abelian order with precisely 2^n groups must be the square of a squarefree number.
Except for a(1) = 4, all terms are odd. The terms that are divisible by 3 are of the form 9 * q_1 * q_2 * ... * q_s, where q_i are distinct primes congruent to 5 modulo 6, q_i !== 1 (mod q_j) for i != j.

Examples

			For primes p, p^2 is a term since the 2 groups of that order are C_{p^2} and C_p X C_p.
For primes p, q, if p^2 !== 1 (mod q) and q !== 1 (mod p), then p^2*q is a term since the 2 groups of that order are C_{p^2*q} and C_p X C_{p*q}.
		

Crossrefs

Equals A060687 INTERSECT A051532 = A054395 INTERSECT A051532 = A054395 INTERSECT A060687 = A054395 INTERSECT A013929.
Equals A350152 \ A350323.
Equals A054395 \ A350586.
Subsequence of A350152.
A001248 and A350332 are subsequences.

Programs

  • PARI
    isA054395(n) = {
      my(p=gcd(n, eulerphi(n)), f);
      if (!isprime(p), return(0));
      if (n%p^2 == 0, return(1 == gcd(p+1, n)));
      f = factor(n); 1 == sum(k=1, matsize(f)[1], f[k, 1]%p==1);
    } \\ Gheorghe Coserea's program for A054395
    isA350322(n) = isA054395(n) && (bigomega(n)-omega(n)==1)
    
  • PARI
    isA051532(n) = my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(0), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(0)))); 1 \\ Charles R Greathouse IV's program for A051532
    isA350322(n) = isA051532(n) && (bigomega(n)-omega(n)==1)
    
  • Python
    def is_ok(m):
        f = factorint(m)
        return (
            sum(f.values()) == len(f) + 1 and
            all((q - 1) % p > 0 for p in f for q in f) and
            (m := next(p for p, e in f.items() if e == 2) ** 2 - 1) and
            all(m % q > 0 for q in f)) # David Radcliffe, Jul 30 2025

A386796 Numbers that have exactly one exponent in their prime factorization that is equal to 2.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 44, 45, 49, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 108, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 164, 169, 171, 172, 175, 188, 198, 200, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 260, 261, 268
Offset: 1

Views

Author

Amiram Eldar, Aug 02 2025

Keywords

Comments

First differs from its subsequence A060687 at n = 16: a(16) = 72 is not a term of A060687.
Differs from A286228 by having the terms 60, 72, 84, 90, ..., and not having the term 1.
Numbers k such that A369427(k) = 1.
The asymptotic density of this sequence is Product_{p primes} (1 - 1/p^2 + 1/p^3) * Sum_{p prime} (p-1)/(p^3 - p + 1) = 0.22661832022705616779... (the product is A330596) (Elma and Martin, 2024).

Crossrefs

A060687 is a subsequence.
Numbers that have exactly one exponent in their prime factorization that is equal to k: A119251 (k=1), this sequence (k=2), A386800 (k=3), A386804 (k=4), A386808 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 2: A337050 (m=0), this sequence (m=1), A386797 (m=2), A386798 (m=3).

Programs

  • Mathematica
    f[p_, e_] := If[e == 2, 1, 0]; s[1] = 0; s[n_] := Plus @@ f @@@ FactorInteger[n]; Select[Range[300], s[#] == 1 &]
  • PARI
    isok(k) = vecsum(apply(x -> if(x == 2, 1, 0), factor(k)[, 2])) == 1;
Previous Showing 21-30 of 55 results. Next