cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A177270 Decimal expansion of (684125+sqrt(635918528029))/1033802.

Original entry on oeis.org

1, 4, 3, 3, 1, 2, 7, 4, 2, 6, 7, 2, 4, 3, 7, 0, 8, 2, 7, 2, 5, 3, 9, 5, 7, 3, 1, 9, 2, 7, 1, 0, 2, 8, 9, 4, 7, 4, 3, 0, 8, 2, 6, 3, 5, 5, 0, 7, 0, 5, 3, 0, 1, 5, 7, 1, 1, 3, 0, 0, 5, 3, 9, 2, 6, 4, 1, 6, 9, 7, 9, 3, 1, 4, 5, 8, 0, 3, 4, 1, 6, 9, 9, 3, 5, 7, 6, 9, 6, 4, 7, 6, 2, 6, 1, 6, 9, 8, 0, 5, 9, 5, 8, 2, 9
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2010

Keywords

Comments

Continued fraction expansion of (684125+sqrt(635918528029))/1033802 is A177274.
Agrees with A060997 for n < 13.

Examples

			(684125+sqrt(635918528029))/1033802 = 1.43312742672437082725...
		

Crossrefs

Cf. A060997, A177271 (decimal expansion of sqrt(635918528029)), A177274 (repeat 1, 2, 3, 4, 5, 6, 7, 8, 9).

Programs

  • Mathematica
    First[RealDigits[(684125+Sqrt[635918528029])/1033802,10,120]] (* Paolo Xausa, Jan 09 2024 *)

A034168 Disjoint discriminants (one form per genus) of type 2 (doubled).

Original entry on oeis.org

2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462
Offset: 1

Views

Author

Jonathan Borwein (jborwein(AT)cecm.sfu.ca), choi(AT)cecm.sfu.ca (Stephen Choi)

Keywords

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, page 293.
  • L. E. Dickson, Introduction to the theory of numbers, Dover, NY, 1929.

Crossrefs

Cf. A000926, A005843, A034169, A055745, A139826. Subsequence of A025052.

Programs

  • Mathematica
    noSol = {};
    Do[lim = Ceiling[(n-2)/3]; found = False; Do[If[n > a*b && Mod[n - a*b, a+b] == 0 && Quotient[n - a*b, a+b] > b, found = True; Break[]], {a, 1, lim-1}, {b, a+1, lim}]; If[!found, AppendTo[noSol, n]], {n, 1000}];
    Select[noSol, EvenQ[#] && SquareFreeQ[#]&] (* Jean-François Alcover, Jul 21 2022, after T. D. Noe in A000926 *)
  • PARI
    ok(n)={n%4==2 && issquarefree(n) && !select(t->t<>2, quadclassunit(-4*n).cyc)} \\ Andrew Howroyd, Jun 09 2018

Formula

Intersection of A005843 and A139826. - Andrew Howroyd, Jun 09 2018

A103370 Row sums of triangle A095801 (matrix square of the Narayana triangle A001263).

Original entry on oeis.org

1, 3, 12, 57, 303, 1743, 10629, 67791, 448023, 3047745, 21235140, 150969195, 1091936745, 8016114681, 59616180828, 448459155063, 3407842605039, 26131449100821, 202011445055436, 1573171285950639, 12333030718989969
Offset: 1

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Examples

			From _Paul D. Hanna_, Feb 01 2009: (Start)
G.f.: A(x) = 1 + 3*x + 12*x^2/3 + 57*x^3/18 + 303*x^4/180 + 1743*x^5/2700 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...
A(x) = B(x)^3 where:
B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 + x^5/2700 +...+ x^n/[n!*(n+1)!/2^n] +... (End)
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{(n + 1) * (n + 2) * a[n] == 2 * (5 * n^2 - 2) * a[n - 1] - 9 * (n - 2) * (n - 1) * a[n - 2], a[1] == 1, a[2] == 3}, a, {n, 21}] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    {a(n)=if(n<1,0,sum(k=1,n,(matrix(n,n,m,j,binomial(m-1,j-1)*binomial(m,j-1)/j)^2)[n,k]))}
    
  • PARI
    {a(n)=local(B=sum(k=0,n,x^k/(k!*(k+1)!/2^k))+x*O(x^n));polcoeff(B^3,n)*n!*(n+1)!/2^n} \\ Paul D. Hanna, Feb 01 2009

Formula

G.f. satisfies: A(x) = B(x)^3 where A(x) = Sum_{n>=0} a(n)*x^n/[n!*(n+1)!/2^n] and B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n]. - Paul D. Hanna, Feb 01 2009
Recurrence: (n+1)*(n+2)*a(n) = 2*(5*n^2-2)*a(n-1) - 9*(n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n+5/2)/(4*Pi*n^3). - Vaclav Kotesovec, Oct 17 2012
G.f.: ((x-1)^2/(4*x*(1-9*x)^(2/3))*(-3*hypergeom([1/3, 1/3],[1],-27*x*(x-1)^2/(9*x-1)^2)+(3*x+1)^3*(9*x-1)^(-2)*hypergeom([4/3, 4/3],[2],-27*x*(x-1)^2/(9*x-1)^2)))-1+1/(2*x). - Mark van Hoeij, May 14 2013
G.f.: -(x-1)^2*hypergeom([1/3, 4/3],[2],-27*x*(x-1)^2/(9*x-1)^2)/(2*x*(1-9*x)^(2/3))-1+1/(2*x). - Mark van Hoeij, Nov 12 2023

A177933 Decimal expansion of (232405+sqrt(71216963807))/348378.

Original entry on oeis.org

1, 4, 3, 3, 1, 2, 7, 4, 2, 6, 7, 2, 2, 2, 9, 1, 1, 3, 0, 6, 9, 3, 4, 5, 3, 5, 5, 4, 9, 7, 5, 2, 3, 5, 5, 5, 7, 3, 6, 9, 3, 4, 0, 0, 8, 4, 0, 6, 9, 9, 9, 7, 1, 4, 6, 6, 5, 9, 6, 4, 6, 7, 0, 3, 1, 7, 6, 1, 3, 7, 8, 0, 1, 6, 6, 3, 2, 3, 6, 8, 1, 2, 3, 2, 5, 7, 5, 9, 2, 8, 7, 6, 3, 6, 4, 5, 9, 6, 2, 1, 6, 8, 8, 9, 9
Offset: 1

Views

Author

Klaus Brockhaus, May 15 2010

Keywords

Comments

Continued fraction expansion of (232405+sqrt(71216963807))/348378 is A010889.
Agrees with A060997 for n < 14, with A177270 for n < 13, with A177034 for n < 11, with A177160 for n < 9.

Examples

			(232405+sqrt(71216963807))/348378 = 1.43312742672229113069...
		

Crossrefs

Cf. A177934 (decimal expansion of sqrt(71216963807)), A010889 (repeat 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), A060997 (decimal representation of continued fraction 1, 2, 3, 4, 5, 6, 7, ...), A177270 (decimal expansion of (684125+sqrt(635918528029))/1033802), A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165), A177160 (decimal expansion of (4502+sqrt(29964677))/6961).

Programs

  • Mathematica
    First[RealDigits[(232405+Sqrt[71216963807])/348378,10,120]] (* Paolo Xausa, Jan 09 2024 *)

A247844 Decimal expansion of the value of the continued fraction [1; 1, 2, 3, 4, 5, ...].

Original entry on oeis.org

1, 6, 9, 7, 7, 7, 4, 6, 5, 7, 9, 6, 4, 0, 0, 7, 9, 8, 2, 0, 0, 6, 7, 9, 0, 5, 9, 2, 5, 5, 1, 7, 5, 2, 5, 9, 9, 4, 8, 6, 6, 5, 8, 2, 6, 2, 9, 9, 8, 0, 2, 1, 2, 3, 2, 3, 6, 8, 6, 3, 0, 0, 8, 2, 8, 1, 6, 5, 3, 0, 8, 5, 2, 7, 6, 4, 6, 4, 1, 1, 1, 2, 9, 9, 6, 9, 6, 5, 6, 5, 4, 1, 8, 2, 6, 7, 6, 5, 6, 8, 7, 2, 3, 9, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 25 2014

Keywords

Comments

Equals 1+A052119.

Examples

			1.697774657964007982006790592551752599486658262998...
		

Crossrefs

Programs

  • Mathematica
    FromContinuedFraction[Join[{1}, Range[50]]] // RealDigits[#, 10, 105]& // First
    (* or *) 1+BesselI[1, 2]/BesselI[0, 2] // RealDigits[#, 10, 105]& // First
  • PARI
    1+besseli(1,2)/besseli(0,2) \\ Charles R Greathouse IV, Oct 23 2023

Formula

1 + I_1(2) / I_0(2), where I_n(x) gives the modified Bessel function of the first kind.

A253095 Moments of 4-step random walk in 4 dimensions.

Original entry on oeis.org

1, 4, 22, 148, 1144, 9784, 90346, 885868, 9115276, 97578688, 1079676448, 12285725632, 143204046496, 1704422018992, 20660609113186, 254522834851516, 3180935346538684, 40269426101933392, 515743456513546072, 6675036087017279056, 87221496402779437696, 1149701868292524559744
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2015

Keywords

Programs

  • Maple
    W := proc(n,nu,twok)
        option remember;
        local k;
        k := twok/2 ;
        if n = 2 and nu = 1 then
            binomial(2*k+2,k+1)/(k+2) ;
        else
            add( procname(n-1,nu,2*j)*binomial(k,j)*(k+nu)!*nu!/(k-j+nu)!/(j+nu)!,j=0..k) ;
            simplify(%,GAMMA) ;
        end if;
    end proc:
    A253095 := proc(n)
        W(4,1,n) ;
    end proc:
    seq(A253095(2*n),n=0..25) ; # R. J. Mathar, Jun 14 2015
  • Mathematica
    W[n_, nu_, twok_] := W[n, nu, twok] = Module[{k}, k = twok/2; If[n == 2 && nu == 1, Binomial[2k+2, k+1]/(k+2), Sum[W[n-1, nu, 2j]*Binomial[k, j]*(k+nu)!*nu!/(k-j+nu)!/(j+nu)!, {j, 0, k}]]];
    A253095[n_] := W[4, 1, n];
    Table[A253095[2n], {n, 0, 25}] (* Jean-François Alcover, Apr 16 2023, after R. J. Mathar *)

A011248 Twice A000364.

Original entry on oeis.org

2, 2, 10, 122, 2770, 101042, 5405530, 398721962, 38783024290, 4809759350882, 740742376475050, 138697748786275802, 31029068327114173810, 8174145018586247784722, 2504519282807259730936570, 883087786498046209107365642, 355038783159078578873329579330, 161446598471775796124336494906562
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (-1)^n 4 Im[PolyLog[-2 n, I]];
    Table[a[n], {n, 0, 17}] (* Peter Luschny, Aug 18 2021 *)

Formula

E.g.f.: 2 - 2/Q(0), where Q(k)= 1 - (2*k+1)*(2*k+2)/x + 1/x*(2*k+1)*(2*k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
From Peter Luschny, Aug 18 2021: (Start)
a(n) = (-1)^n*4^(2*n+1)*(Bernoulli(2*n+1, 3/4) - Bernoulli(2*n+1, 1/4))/(2*n+1).
a(n) = (-1)^n*4*Im(PolyLog(-2*n, i)). (End)

A055745 Squarefree numbers not of form ab + bc + ca for 1 <= a <= b <= c (probably the list is complete).

Original entry on oeis.org

1, 2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462
Offset: 1

Views

Author

Keywords

References

  • Maohua Le, A note on positive integer solutions of the equation xy+yz+zx=n, Publ. Math. Debrecen 52 (1998) 159-165; Math. Rev. 98j:11016.

Crossrefs

Programs

  • Mathematica
    solQ[n_, x_] := Reduce[1 <= y <= z && n == x*y + y*z + z*x, {y, z}, Integers] =!= False; solQ[n_] := Catch[xm = Ceiling[(n-1)/2]; For[x = 1, x <= xm, x++, Which[ solQ[n, x] === True, Throw[True], x == xm, Throw[False]]]] ; solQ[1] = False; Reap[ Do[ If[ SquareFreeQ[n], If[! solQ[n] , Print[n]; Sow[n]]], {n, 1, 500}]][[2, 1]] (* Jean-François Alcover, Jun 15 2012 *)

A218147 Degree of minimal polynomial satisfied by exp(8*Pi*phi_2(1/n,1/n)), where phi_2 is defined in the Comments.

Original entry on oeis.org

2, 2, 4, 4, 12, 8, 18, 8, 30, 16, 36, 24, 32, 32, 64, 36, 90, 32, 96, 60, 132, 64, 100, 72, 162, 96, 196, 64, 240, 128, 240, 128, 192, 144, 324, 180, 288, 128, 400, 192, 462, 240, 288, 264, 552, 256, 588, 200, 512, 288, 676, 324, 480, 384, 720, 392, 870, 256
Offset: 3

Views

Author

Jason Kimberley, Oct 21 2012 and Apr 04 2016

Keywords

Comments

Crandall defines phi_2(r_1,r_2) = (1/Pi^2) Sum_{positive & negative odd m_1, m_2} cos(Pi m_1 r_1) cos(Pi m_2 r_2) / (m_1^2+m_2^2).
Lemma: 4a(n) < n^2. Proof: 4a(2) = 2 < 2^2; 4a(4k+1) = 16k^2 < (4k+1)^2; 4a(4k+3) = (4k+2)(4k+4) = (4k+3)^2-1; 4a(p^2 k) = 4p^2 a(pk) < p^2(pk)^2 = (p^2 k)^2; 4 a(jk) = 4 a(j) 4 a(k) < (jk)^2.
Corollary: a(n) <= A198442(n).

References

  • R. Crandall, The Poisson equation and "natural" Madelung constants, preprint 2012 (see section 2 of BBCZ below).

Crossrefs

Programs

Formula

a(n) = A079458(n) / 4, for n > 2. - Jason Kimberley, Nov 14 2015
Watson Ladd has proved that the sequence satisfies the following recurrence relations, which were conjectured by Jason Kimberley:
a(1) = 1/4, a(2) = 1/2, for notational convenience;
a(4k+1) = (2k)*(2k) for prime 4k+1;
a(4k+3) = (2k+1)*(2k+2) for prime 4k+3;
a(p^2 k) = p^2 * a(p*k) for prime p;
a(jk) = 4*a(j)*a(k) for j coprime to k.

Extensions

Entry revised by N. J. A. Sloane, May 15 2016, to take into account the fact that the conjectured formula for this sequence has now been established by Watson Ladd.

A119822 Decimal representation of continued fraction 1, 2, 5, 14, 42, ... (Catalan numbers).

Original entry on oeis.org

1, 4, 5, 5, 1, 2, 7, 2, 2, 8, 5, 7, 7, 4, 9, 2, 7, 6, 3, 5, 6, 2, 5, 1, 9, 1, 2, 3, 4, 4, 0, 6, 1, 5, 3, 2, 4, 9, 1, 8, 9, 8, 7, 1, 2, 6, 8, 6, 0, 8, 2, 4, 2, 6, 2, 2, 2, 7, 7, 1, 4, 7, 6, 8, 4, 4, 2, 0, 8, 9, 9, 8, 3, 8, 8, 2, 3, 7, 3, 9, 2, 4, 5, 2, 1, 1, 1, 4, 6, 9, 7, 5, 2, 0, 0, 0, 4, 0, 5, 6, 1, 9, 4, 5, 2
Offset: 1

Views

Author

Alexander Adamchuk, Jul 30 2006

Keywords

Comments

It is the limit of continued fraction of Catalan numbers (1 + 1/(2 + 1/(5 + 1/(14 + 1/(42 + 1/(132 + 1/(429 + 1/(1430 + 1/(4862 + 1/(16796 + ...)))))))))).

Examples

			1.45512722857749276356251912344061532491898712686082426222771476844208998388...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Normal[ ContinuedFractionForm[ Table[(2k)!/k!/(k+1)!, {k,1,30} ]]], 10, 130] [[1]]
Previous Showing 11-20 of 25 results. Next