cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A035048 Numerators of alternating sum transform (PSumSIGN) of Harmonic numbers H(n) = A001008/A002805.

Original entry on oeis.org

1, 1, 4, 3, 23, 11, 176, 25, 563, 137, 6508, 49, 88069, 363, 91072, 761, 1593269, 7129, 31037876, 7381, 31730711, 83711, 744355888, 86021, 3788707301, 1145993, 11552032628, 1171733, 340028535787, 1195757
Offset: 1

Views

Author

Keywords

Comments

p^2 divides a(2p-2) for prime p>3. a(2p-2)/p^2 = A061002(n) = A001008(p-1)/p^2 for prime p>2. - Alexander Adamchuk, Jul 07 2006

Crossrefs

Programs

  • Maple
    S:= series(log(1-x)/(x^2-1), x, 101):
    seq(numer(coeff(S,x,j)), j=1..100); # Robert Israel, Jun 02 2015
  • Mathematica
    Numerator[Table[Sum[(-1)^(k+1)*Sum[(-1)^(i+1)*1/i,{i,1,k}],{k,1,n}],{n,1,50}]] (* Alexander Adamchuk, Jul 07 2006 *)
  • PARI
    a(n)=numerator(polcoeff(log(1-x)/(x^2-1)+O(x^(n+1)),n))

Formula

G.f. for A035048(n)/A035047(n) : log(1-x)/(x^2-1). - Benoit Cloitre, Jun 15 2003
a(n) = Numerator[Sum[(-1)^(k+1)*Sum[(-1)^(i+1)*1/i,{i,1,k}],{k,1,n}]]. - Alexander Adamchuk, Jul 07 2006
a(n) = numerator((-1)^(n+1)*1/2*(log(2)+(-1)^(n+1)*(gamma+1/2*(psi(1+n/2)-psi(3/2+n/2))+psi(2+n)))), with gamma the Euler-Mascheroni constant. - - Gerry Martens, Apr 28 2011

A127061 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is a square and denominator Sum_{k=1..p-1} 1/k^3 is a cube.

Original entry on oeis.org

2, 3, 5, 17, 29, 31, 37, 41, 97, 439, 443, 449, 457, 461, 463, 1009, 1013, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4283, 4289, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511
Offset: 1

Views

Author

Artur Jasinski, Jan 04 2007

Keywords

Crossrefs

Programs

Formula

Intersection of A127042 and A127046. - Michel Marcus, Nov 05 2013

Extensions

More terms from Max Alekseyev, Feb 08 2007
Missing terms in the [9461, 9587] range inserted by Michel Marcus, Nov 05 2013

A120285 Numerator of harmonic number H(p-1) = Sum_{k=1..p-1} 1/k for prime p.

Original entry on oeis.org

1, 3, 25, 49, 7381, 86021, 2436559, 14274301, 19093197, 315404588903, 9304682830147, 54801925434709, 2078178381193813, 12309312989335019, 5943339269060627227, 14063600165435720745359, 254381445831833111660789
Offset: 1

Views

Author

Alexander Adamchuk, Jul 07 2006

Keywords

Comments

Prime(n)^2 divides a(n) for n>2.

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.

Crossrefs

Programs

  • Maple
    f3:=proc(n) local p;
    p:=ithprime(n);
    numer(add(1/i,i=1..p-1));
    end proc;
    [seq(f3(n),n=1..20)];
  • Mathematica
    Numerator[Table[Sum[1/k,{k,1,Prime[n]-1}],{n,1,20}]]
    Table[HarmonicNumber[p],{p,Prime[Range[20]]-1}]//Numerator (* Harvey P. Dale, May 18 2023 *)
  • PARI
    a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k)); \\ Michel Marcus, Dec 25 2018

Formula

a(n) = numerator(Sum_{k=1..prime(n)-1} 1/k).
a(n) = A001008(prime(n)-1).
a(n) = A061002(n)*prime(n)^2 for n > 2.

A125551 As p runs through primes >= 5, sequence gives { numerator of Sum_{k=1..p-1} 1/k^2 } / p.

Original entry on oeis.org

41, 767, 178939, 18500393, 48409924397, 12569511639119, 15392144025383, 358066574927343685421, 282108494885353559158399, 911609127797473147741660153, 1128121200256091571107985892349
Offset: 3

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Comments

This is an integer by a theorem of Waring and Wolstenholme.

Crossrefs

Programs

  • Maple
    f1:=proc(n) local p;
    p:=ithprime(n);
    (1/p)*numer(add(1/i^2,i=1..p-1));
    end proc;
    [seq(f1(n),n=3..20)];
  • Mathematica
    a = {}; Do[AppendTo[a, (1/(Prime[x]))Numerator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]], {x, 3, 50}]; a
    Table[Sum[1/k^2,{k,p-1}]/p,{p,Prime[Range[3,20]]}]//Numerator (* Harvey P. Dale, Nov 20 2019 *)

A186720 As p runs through the primes, sequence gives denominator of Sum_{k=1..p-1} 1/k^2.

Original entry on oeis.org

1, 4, 144, 3600, 1270080, 153679680, 519437318400, 150117385017600, 221193371393280, 6450247552370862240000, 5424658191543895143840000, 20852386088294732932920960000, 28546916554875489385168794240000, 6855338104106528236638391873920000, 12675520154492970709544386574878080000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2012

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.

Crossrefs

Programs

  • Maple
    f2:=proc(n) local p;
    p:=ithprime(n);
    denom(add(1/i^2,i=1..p-1));
    end proc;
    [seq(f2(n),n=1..20)];
  • Mathematica
    a[n_] := HarmonicNumber[Prime[n] - 1, 2] // Denominator;
    Array[a, 15] (* Jean-François Alcover, Nov 25 2017 *)

A076638 Denominators of harmonic numbers when the numerators are divisible by squares of primes >= 5 in the case of Wolstenholme's Theorem.

Original entry on oeis.org

12, 20, 2520, 27720, 720720, 4084080, 5173168, 80313433200, 2329089562800, 13127595717600, 485721041551200, 2844937529085600, 1345655451257488800, 3099044504245996706400, 54749786241679275146400, 3230237388259077233637600
Offset: 1

Views

Author

Michael Gilleland (megilleland(AT)yahoo.com), Oct 23 2002

Keywords

Comments

From Bernard Schott, Dec 28 2018: (Start)
By Wolstenholme's Theorem, if p prime >= 5, the numerator of the harmonic number H_{p-1} is always divisible by p^2. The obtained quotients are in A061002.
The numerators of H_7 and H_{29} are also divisible by prime squares, respectively by 11^2 and 43^2, but not in the case of Wolstenholme's theorem, so the denominators of H_7 and H_{29} are not in this sequence here. (End)

Examples

			a(1)=12 because the numerator of H_4 = 25/12 is divisible by the square of 5;
a(2)=20 because the numerator of H_6 = 49/20 is divisible by the square of 7.
		

Crossrefs

Programs

  • Mathematica
    a[p_] := Denominator[HarmonicNumber[p - 1]]; a /@ Prime@Range[3, 20] (* Amiram Eldar, Dec 28 2018 *)

Extensions

More terms added by Amiram Eldar, Dec 04 2018

A127045 Primes p such that denominator of Sum_{k=1..p-1} 1/k^9 is a 9th power.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 29, 31, 37, 97, 127, 131, 251, 257, 263, 293, 431, 433, 439, 443, 449, 457, 461, 463, 467, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3797, 3803, 3821, 3823, 3833, 3907, 3911, 3917
Offset: 1

Views

Author

Artur Jasinski, Jan 04 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^9; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/9)], AppendTo[a, i + 1]]]]; a] d[2000]
    Select[Flatten[Position[Denominator[Accumulate[1/Range[4000]^9]],?(IntegerQ[ Surd[ #,9]]&)]]+1,PrimeQ] (* _Harvey P. Dale, Aug 06 2022 *)

A127052 Primes p such that denominator of Sum_{k=1..p-1} 1/k^8 is an eighth power.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 53, 67, 71, 73, 97, 101, 127, 131, 197, 199, 211, 251, 367, 373, 379, 773, 787, 797, 809, 811, 1373, 1433, 1439, 2027, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^8; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/8)], AppendTo[a, i + 1]]]]; a]; d[2000]

A127062 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is a square and denominator Sum_{k=1..p-1} 1/k^3 is a cube and denominator Sum_{k=1..p-1} 1/k^4 is a fourth power.

Original entry on oeis.org

2, 3, 5, 17, 29, 31, 97, 439, 443, 449, 457, 461, 463, 1009, 1013, 24391, 24407, 24413, 24419, 24421, 24439, 24443, 24469, 24473, 24481, 117659, 117671, 117673, 117679, 117701, 117703, 117709, 117721, 117727, 117731, 117751, 117757, 117763, 117773
Offset: 1

Views

Author

Artur Jasinski, Jan 04 2007

Keywords

Comments

Subsequence of A127061. - Max Alekseyev, Feb 08 2007

Crossrefs

Programs

  • Mathematica
    pdenQ[n_]:=Module[{c=Denominator[Table[Sum[1/k^i,{k,n-1}],{i,2,4}]]}, AllTrue[{ Surd[c[[1]],2], Surd[c[[2]],3],Surd[c[[3]],4]},IntegerQ]]; Select[Prime[Range[12000]],pdenQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 06 2015 *)
  • PARI
    lista(nn) = {forprime(p = 2, nn, if (issquare(denominator(sum(k=1, p-1, 1/k^2))) && ispower(denominator(sum(k=1, p-1, 1/k^3)),3) && ispower(denominator(sum(k=1, p-1, 1/k^4)),4), print1(p, ", ")););} \\ Michel Marcus, Nov 05 2013

Formula

Intersection of A127042, A127046 and A127047. - Michel Marcus, Nov 05 2013

Extensions

More terms from Max Alekseyev, Feb 08 2007

A186722 a(n) = numerator of Sum_{k=1..p-1} 1/k^2 for p the n-th prime.

Original entry on oeis.org

1, 5, 205, 5369, 1968329, 240505109, 822968714749, 238820721143261, 354019312583809, 10383930672892966877209, 8745363341445960333910369, 33729537728506506466441425661, 46252969210499754415427421586309, 11115284554577186575391010113969347, 20577813589884143264711540636313749803
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2012

Keywords

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22-23.

Crossrefs

Programs

  • Maple
    f3:=proc(n) local p;
    p:=ithprime(n);
    numer(add(1/i^2,i=1..p-1));
    end proc;
    [seq(f3(n),n=1..20)];
  • Mathematica
    Table[Numerator[HarmonicNumber[Prime[n]-1, 2]], {n, 1, 15}] (* Jean-François Alcover, Nov 29 2017 *)
  • PARI
    a(n) = my(p=prime(n)); numerator(sum(k=1, p-1, 1/k^2)); \\ Michel Marcus, Apr 05 2015
Previous Showing 11-20 of 24 results. Next