cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A246943 a(4n) = 4*n , a(2n+1) = 8*n+4 , a(4n+2) = 2*n+1.

Original entry on oeis.org

0, 4, 1, 12, 4, 20, 3, 28, 8, 36, 5, 44, 12, 52, 7, 60, 16, 68, 9, 76, 20, 84, 11, 92, 24, 100, 13, 108, 28, 116, 15, 124, 32, 132, 17, 140, 36, 148, 19, 156, 40, 164, 21, 172, 44, 180, 23, 188, 48, 196, 25, 204, 52, 212, 27, 220, 56, 228
Offset: 0

Views

Author

Paul Curtz, Sep 08 2014

Keywords

Comments

Consider the denominators of the Balmer series A061038(n) = 0, 4, 1, 36, 16, 100,... (a permutation of the squares of the nonnegative numbers i.e. A000290(n)) divided by A028310(n)=1,1,2,... . The numerators are a(n). The denominators are A138191(n).
Note that A061038(3n)=9*A061038(n), n>=1.
a(3n) is divisible by the period 3 sequence: repeat 9, 3, 3.

Examples

			Numerators of a(0)=0/1=0, a(1)=4/1=4, a(2)=1/2, a(3)=36/3=12,... .
		

Crossrefs

Programs

  • Maple
    A246943:=n->n*(19-(-1)^n*13+2*cos(n*Pi/2))/8: seq(A246943(n), n=0..100); # Wesley Ivan Hurt, Apr 18 2017
  • Mathematica
    LinearRecurrence[{0,0,0,2,0,0,0,-1},{0,4,1,12,4,20,3,28},60] (* Harvey P. Dale, Jun 22 2022 *)
  • PARI
    concat(0, Vec(x*(4*x^6+x^5+12*x^4+4*x^3+12*x^2+x+4)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100))) \\ Colin Barker, Sep 08 2014

Formula

Numerators of A061038(n)/A028310(n).
a(2n) = A022998(n).
G.f.: x*(4*x^6+x^5+12*x^4+4*x^3+12*x^2+x+4) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Sep 08 2014
a(n) = n*(19-13*(-1)^n+(1+(-1)^n)*(-1)^((2*n-1+(-1)^n)/4))/8. - Luce ETIENNE, May 26 2015
a(n) = n*(19-(-1)^n*13+2*cos(n*Pi/2))/8. - Giovanni Resta, May 26 2015

A247829 a(3*k) = k*(k+1), a(3*k+1) = (2*k-1)*(2*k+1), a(3*k+2) = (2*k-1)*(2*k+3).

Original entry on oeis.org

0, -1, -3, 2, 3, 5, 6, 15, 21, 12, 35, 45, 20, 63, 77, 30, 99, 117, 42, 143, 165, 56, 195, 221, 72, 255, 285, 90, 323, 357, 110, 399, 437, 132, 483, 525, 156, 575, 621, 182, 675, 725, 210, 783, 837, 240, 899, 957, 272, 1023, 1085, 306, 1155, 1221, 342, 1295
Offset: 0

Views

Author

Paul Curtz, Dec 01 2014

Keywords

Comments

A permutation of A061037(n) = -1, -3, 0, 5, 3, 21, 2, 45, 15, 77, 6, ... and of A214297(n) = -1, 0, -3, 2, 3, 6, 5, 12, ... .
Among consequences: b(n) = 4*a(n) + (sequence of period 3:repeat 1, 4, 16) = 1, 0, 4, 9, 16, 36, 25, 64, 100, ... , is a permutation of the squares of the nonnegative integers A000290(n).
And a(n)/b(n) = 0/1, -1/0, -3/4, 2/9, 3/16, 5/36, ... is a permutation of the Balmer series A061037(n)/A061038(n) = -1/0, -3/4, 0/1, 5/36, 3/16, ... .
a(5n) is divisible by 5.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(3*x^7-3*x^6-14*x^4-6*x^3-2*x^2+3*x+1)/((x-1)^3*(x^2 +x+1)^3))); // G. C. Greubel, Sep 20 2018
  • Maple
    seq(op([k*(k+1),(2*k-1)*(2*k+1),(2*k-1)*(2*k+3)]), k=0..100); # Robert Israel, Dec 01 2014
  • Mathematica
    Table[Sequence @@ {n*(n+1), (2*n-1)*(2*n+1), (2*n-1)*(2*n+3)}, {n, 0, 18}] (* Jean-François Alcover, Dec 16 2014 *)
  • PARI
    concat(0, Vec(x*(3*x^7-3*x^6-14*x^4-6*x^3-2*x^2+3*x+1)/((x-1)^3*(x^2+x+1)^3) + O(x^100))) \\ Colin Barker, Dec 02 2014
    

Formula

a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9).
a(3*k) + a(3*k+1) + a(3*k+2) = 9*k^2 + 5*k - 4.
G.f.: x*(3*x^7 - 3*x^6 - 14*x^4 - 6*x^3 - 2*x^2 + 3*x + 1)/((x-1)^3*(x^2 +x+1)^3). - Robert Israel, Dec 01 2014
a(n) = -(n^2 + n + floor(n/3)*(27*floor(n/3)^3 - 18*(n+1)*floor(n/3)^2 + (3*n^2 + 21*n - 14)*floor(n/3) - (5*n^2 - n + 5)))/2. - Luce ETIENNE, Mar 13 2017
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/2.
Sum_{n>=1} (-1)^n/a(n) = Pi/4 + 1 - 2*log(2). (End)

A152018 Denominator of 1/n^2-1/(3n)^2 or of 8/(9n^2).

Original entry on oeis.org

9, 9, 81, 18, 225, 81, 441, 72, 729, 225, 1089, 162, 1521, 441, 2025, 288, 2601, 729, 3249, 450, 3969, 1089, 4761, 648, 5625, 1521, 6561, 882, 7569, 2025, 8649, 1152, 9801, 2601, 11025, 1458, 12321, 3249, 13689, 1800, 15129, 3969, 16641, 2178, 18225
Offset: 1

Views

Author

Paul Curtz, Nov 20 2008

Keywords

Comments

The associated terms of the n-th main series of the Hydrogen energy spectrum are A000290(3), A061038(6), A061040(9), A061042(12), A061044(15), A061046(18), A061048(21), A061050(24), etc.
All numbers are multiples of 9.

Crossrefs

Cf. A143025 with a similar principle of construction.
Cf. A291050.

Programs

  • Mathematica
    Denominator/@(8/(9Range[50]^2))  (* Harvey P. Dale, Mar 15 2011 *)

Formula

Sum_{n>=1} 1/a(n) = Pi^2/27 (A291050). - Amiram Eldar, Sep 14 2022

Extensions

Stratified definition, corrected indices, extended, R. J. Mathar, Dec 10 2008

A181763 a(n) = A061037(n)^2.

Original entry on oeis.org

0, 25, 9, 441, 4, 2025, 225, 5929, 36, 13689, 1225, 27225, 144, 48841, 3969, 81225, 400, 127449, 9801, 190969, 900, 275625, 20449, 385641, 1764, 525625, 38025, 700569, 3136, 915849, 65025, 1177225, 5184, 1490841, 104329, 1863225, 8100
Offset: 2

Views

Author

Paul Curtz, Nov 14 2010

Keywords

Comments

A061038(n)/a(n+2) for n >= 2 gives the reduced fractions 1/9, 4/49, 4, 4/81, 1/25, 4/121, 16/9, 4/169, ...

Crossrefs

Programs

Formula

Sum_{n>=3} 1/a(n) = 79*Pi^2/192 - 65/18. - Amiram Eldar, Aug 14 2022

A187541 a(4n+2) = 2n+1, otherwise a(n) = 4n.

Original entry on oeis.org

0, 4, 1, 12, 16, 20, 3, 28, 32, 36, 5, 44, 48, 52, 7, 60, 64, 68, 9, 76, 80, 84, 11, 92, 96, 100, 13, 108, 112, 116, 15, 124, 128, 132, 17, 140, 144, 148, 19, 156, 160, 164, 21, 172, 176, 180, 23, 188, 192, 196, 25, 204, 208, 212, 27, 220, 224, 228, 29, 236, 240, 244, 31, 252
Offset: 0

Views

Author

Paul Curtz, Mar 11 2011

Keywords

Crossrefs

Programs

Formula

a(n) = 2*a(n-4) - a(n-8) for n>7.
G.f.: x*(4+x+12*x^2+16*x^3+12*x^4+x^5+4*x^6)/(1-x^4)^2; a(n) = (n/8)*(32 -7*(1+(-1)^n)*(1-i^n)) where i=sqrt(-1). - Bruno Berselli, Mar 15 2011
From Paul Curtz, Mar 22 2011: (Start)
A060819(n)*a(n) = 0,4,1,36,16,100, = 0,4, followed by A061038(n+2).
a(n) = a(n-4) + period 4: repeat [16, 16, 2, 16]. Note that a(n) = 4*n/(period 4: repeat [1, 1, 8, 1]), Hence 16's = A010855. (End)
a(n) = 16*n/(11+7*(I^(2*n)-I^(-n)-I^n)). - Wesley Ivan Hurt, Jul 05 2016

Extensions

Edited by N. J. A. Sloane, Mar 15 2011

A214630 a(n) is the reduced numerator of 1/4 - 1/A109043(n)^2 = (1 - 1/A026741(n)^2)/4.

Original entry on oeis.org

-1, 0, 0, 2, 3, 6, 2, 12, 15, 20, 6, 30, 35, 42, 12, 56, 63, 72, 20, 90, 99, 110, 30, 132, 143, 156, 42, 182, 195, 210, 56, 240, 255, 272, 72, 306, 323, 342, 90, 380, 399, 420, 110, 462, 483, 506, 132, 552, 575, 600, 156
Offset: 0

Views

Author

Paul Curtz, Jul 23 2012

Keywords

Comments

The unreduced fractions are -1/0, 0/4, 0/1, 8/36, 3/16, 24/100, 2/9, 48/196, 15/64, 80/324, 6/25, ... = c(n)/A061038(n), say.
Note that c(n)=A061037(n) + (period of length 2: repeat 0, 3).
c(n) is a permutation of A198442(n). The corresponding ranks are (the 0's have been swapped for convenience) 0,2,1,6,4,10,... = A145979(n-2).
Define the following sequences, satisfying the recurrence a(n) = 2*a(n-4) - a(n-8),
e(n) = -1, 0, 0, 2, 1, 4, 1, 6, 3, 8, 2, 10, 5, ... (after -1, a permutation of A004526(n) or mix A026741(n-1), 2*n),
f(n) = 1, 2, 1, 4, 3, 6, 2, 8, 5, 10, 3, 12, 7, ..., (another permutation of A004526(n+2) or mix A026741(n+1), 2*n+2).
f(n) - e(n) = periodic of period length 4: repeat 2, 2, 1, 2.
e(n) + f(n) = 0, 2, 1, 6, 4, 10, ... = A145979(n-2).
Then c(n) = e(n)*f(n).
Note that A061038(n) - 4*c(n) = periodic of period length 4: repeat 4, 4, 1, 4.
After division (by period 2: repeat 1, 4, A010685(n)), the reduced fractions of c(n) are -1/0, 0/1 ?, 0/4 ?, 2/9, 3/16, 6/25, 2/9, 12/49, 15/64, 20/81, 6/25, ... = a(n)/b(n).
Note that a(1+4*n) + a(2+4*n) + a(3+4*n) = 2,20,56,... = A002378(1+3*n) = A194767(3*n).
A061037(n-2) - a(n-2) = 0, -3, 0, -3, 0, 3, 0, 15, 0, 33, 0, 57, ... = Fip(n-2).
Fip(n-2)/3 = 0,-1,0,-1,0,1,0,5,0,11,0,19,0,29, .... Without 0's: A165900(n) (a Fibonacci polynomial); also -A110331(n+1) (Pell numbers).
g(n) = -1, 0, 0, 1, 1, 2, 1, 3, 3, 4, ... = mix A026741(n-1), n.
h(n) = 1, 1, 1, 2, 3, 3, 2, 4, 5, 5, ... = mix A026741(n+1), n+1.
h(n) - g(n) = (period 2: repeat 2, 1, 1, 1 = A177704(n-1)).
k(n) = 1, 1, 0, 2, 3, 3, 1, 4, 5, 5, ... = mix A174239(n), n+1.
l(n) = -1, 0, 1, 1, 1, 2, 2, 3, 3, 4, ... .
k(n) - l(n) = period 4: repeat 2, 1, -1, 1.
2) By the second formula in the definition, we take first 1 - 1/A026741(n)^2.
Hence, using a convention for the first fraction, -1/0, 0/1, 0/1, 8/9, 3/4, 24/25, 8/9, 48/49, 15/16, 80/81, 24/25, ... = (A005563(n-1) - A033996(n))/A168077(n) = q(n)/A168077(n).
For a(n), we divide by 4.
Note that A214297 is the reduced numerator of 1/4 - 1/A061038(n).
Note also that A168077(n) = A026741(n)^2.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((1-x)^3*(x+1)^3*(x^2+1)^3))); // G. C. Greubel, Sep 20 2018
  • Mathematica
    CoefficientList[Series[(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((1-x)^3*(x+1)^3*(x^2+1)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 20 2018 *)
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{-1,0,0,2,3,6,2,12,15,20,6,30},60] (* Harvey P. Dale, Jul 01 2019 *)
  • PARI
    Vec(-(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((x-1)^3*(x+ 1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jan 22 2015
    

Formula

a(4*n) = 4*n^2-1 = (2*n-1)*(2*n+1), a(2*n+1) = a(4*n+2) = n(n+1).
a(n)= A198442(n)/(period of length 4: repeat 1,1,4,1=A010121(n+2)).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). Is this the shortest possible recurrence? See A214297.
a(n+2) - a(n-2) = 0, 2, 4, 6, 2, 10, 12, 14, 4, ... = 2*A214392(n). a(-2)=a(-1)=0=a(1)=a(2).
a(n+4) - a(n-4) = 0, 4, 2, 12, 16, 20, 6, 28, 32, 36,... = 2*A188167(n). a(-4)=3=a(4), a(-3)=2=a(3).
a(n) = g(n) * h(n).
a(n) = k(n) * l(n).
G.f.: -(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1) / ((x-1)^3*(x+1)^3*(x^2+1)^3). - Colin Barker, Jan 22 2015
From Luce ETIENNE, Apr 08 2017: (Start)
a(n) = (13*n^2-28-3*(n^2+4)*(-1)^n+3*(n^2-4)*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((2*n+1-(-1)^n)/4)))/64.
a(n) = (13*n^2-28-3*(n^2+4)*cos(n*Pi)+6*(n^2-4)*cos(n*Pi/2))/64. (End)

Extensions

Edited by N. J. A. Sloane, Aug 04 2012

A226279 a(4n) = a(4n+2) = 2*n , a(4n+1) = a(4n+3) = 2*n-1.

Original entry on oeis.org

0, -1, 0, -1, 2, 1, 2, 1, 4, 3, 4, 3, 6, 5, 6, 5, 8, 7, 8, 7, 10, 9, 10, 9, 12, 11, 12, 11, 14, 13, 14, 13, 16, 15, 16, 15, 18, 17, 18, 17, 20, 19, 20, 19, 22, 21, 22, 21, 24, 23, 24, 23, 26, 25, 26, 25, 28, 27, 28, 27, 30, 29, 30, 29
Offset: 0

Views

Author

Paul Curtz, Jun 02 2013

Keywords

Comments

a(n)=c(n) in A214297(n).
In A214297 d(n)=-1,1,1,3,1,3,3,... = mix (-A186422(2n) , A186422(2n+1)).
A214297 is the (reduced) numerator of 1/4 - 1/A061038(n).
(i.e. (1/4 -(1/0, 1/4, 1, 1/36, 1/16,...)) = -1/0, 0/1, -3/4, 2/9, 3/16,... )
1/0 is a convention.
n^2=(a(n+1)+d(n+1))^2 are the denominators.

Crossrefs

Programs

Formula

a(0) = a(2)=0, a(1)=a(3)=-1, a(4)=2.
a(n) = a(n-4) + 2, n > 3.
a(n) = a(n-1) + a(n-4) - a(n-5), n > 4.
A214297(n) = a(n+1) * d(n+1).
G.f.: x*(3*x^3-x^2+x-1) / ((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Sep 22 2013

A227168 a(n) = gcd(2*n, n*(n+1)/2)^2.

Original entry on oeis.org

1, 1, 36, 4, 25, 9, 196, 16, 81, 25, 484, 36, 169, 49, 900, 64, 289, 81, 1444, 100, 441, 121, 2116, 144, 625, 169, 2916, 196, 841, 225, 3844, 256, 1089, 289, 4900, 324, 1369, 361, 6084, 400
Offset: 1

Views

Author

Paul Curtz, Jul 03 2013

Keywords

Comments

a(n) is defined as A062828(n)^2 for n >= 1. If we extend the sequence to n=0 and negative n by use of the recurrence that relates a(n) to a(n+12), a(n+8) and a(n+4), we obtain a(0)=0, a(-1)=4 and a(-n) = A176743(n-2)^2 for n >= 2.
Define c(n) = a(n+2) - a(n-2) for c >= 0. Because a(n) is a shuffle of three interleaved 2nd-order polynomials, c(n) is a shuffle of three interleaved 1st-order polynomials: c(n) = 4* A062828(n)*(periodically repeated 1, 8, 1, 1).
The sequence a(n) is case p=0 of the family A062828(n)*A062828(n+p):
0, 1, 1, 36, 4, 25, 9, 196, ... = a(n).
0, 1, 6, 12, 10, 15, 42, 56, ... = A130658(n)*A000217(n) = A177002(n-1)*A064038(n+1).
0, 6, 2, 30, 6, 70, 12, 126, ... = 2*A198148(n)
0, 2, 5, 18, 28, 20, 27, 70, ... = A177002(n+2)*A160050(n+1) = A014695(n+2)*A000096(n).

Crossrefs

Programs

Formula

a(n) = A062828(n)^2.
a(4n) = (4*n+1)^2; a(2n+1) = (n+1)^2; a(4n+2) = 4*(4*n+3)^2.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n) * (period 4: repeat 4, 1, 1, 4) = A061038(n).
A005565(n-3) = a(n+1) * A061037(n). - Corrected by R. J. Mathar, Jul 25 2013
a(n) = A130658(n-1)^2 * A181318(n). - Corrected by R. J. Mathar, Aug 01 2013
G.f.: -x*(1 + x + 36*x^2 + 4*x^3 + 22*x^4 + 6*x^5 + 88*x^6 + 4*x^7 + 9*x^8 + x^9 + 4*x^10) / ( (x-1)^3*(1+x)^3*(x^2+1)^3 ). - R. J. Mathar, Jul 20 2013
Sum_{n>=1} 1/a(n) = 47*Pi^2/192 + 3*G/8, where G is Catalan's constant (A006752). - Amiram Eldar, Aug 21 2022

A236203 Interleave A005563(n), A028347(n).

Original entry on oeis.org

0, 0, 3, 5, 8, 12, 15, 21, 24, 32, 35, 45, 48, 60, 63, 77, 80, 96, 99, 117, 120, 140, 143, 165, 168, 192, 195, 221, 224, 252, 255, 285, 288, 320, 323, 357, 360, 396, 399, 437, 440, 480, 483, 525, 528, 572, 575, 621, 624, 672, 675, 725, 728, 780, 783, 837, 840, 896
Offset: 2

Views

Author

Paul Curtz, Jan 20 2014

Keywords

Comments

A175628 gives the numerators of interleaved Lyman and Balmer series, i.e., A005563(n)/A000290(n+1) and A061037(n+2)/A061038(n+2).
Difference table of a(n):
-1, -3, 0, 0, 3, 5, 8, 12, 15, 21, 24, ...
-2, 3, 0, 3, 2, 3, 4, 3, 6, 3, 8, ...
5, -3, 3, -1, 1, 1, -1, 3, -3, 5, -5, ...
-8, 6, -4, 2, 0, -2, 4, -6, 8, -10, 12, ...
14, -10, 6, -2, -2, 6, -10, 14, -18, 22, -26, ...
-24, 16, -8, 0, 8, -16, 24, -32, 40, -48, 56, ... .
a(n+2) gives the numerators of 0/1, 0/16, 3/4, 5/36, 8/9, 12/64, 15/16, 21/100, 24/25, 32/144, ... . The denominators are A097362(n+1)^2. (Compare A097362 to A029578.)
Note the particular distribution of a(-n). Example:
a(n-9) = 12,15, 5,8, 0,3, -3,0, -4,-1, -3,0, 0,3, 5,8, 12,15, ... .
a(2n) + a(2n+1) = a(-2n-1) + a(-2n-2) = -4,0,8,20,36,56,80,... = 4*A000096(n-1).
a(2n) + a(2n-1) = a(-2n) + a(-2n-1) = -5,-3,3,13,... = A001105(n) - A010716(n).

Crossrefs

Programs

  • GAP
    List([2..60], n-> (2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8 ); # G. C. Greubel, Dec 04 2019
  • Magma
    [(2*n^2 + 2*n - 19 - (2*n - 11)*(-1)^n)/8: n in [2..60]]; // Vincenzo Librandi, Jul 27 2014
    
  • Maple
    seq( (2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8, n=2..60); # G. C. Greubel, Dec 04 2019
  • Mathematica
    CoefficientList[Series[x^2(3x^2-2x-3)/((x-1)^3(x+1)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Jul 27 2014 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,0,3,5,8},60] (* Harvey P. Dale, Aug 30 2018 *)
  • PARI
    concat([0,0], Vec(x^4*(3*x^2-2*x-3)/((x-1)^3*(x+1)^2) + O(x^60))) \\ Colin Barker, Jan 26 2014
    
  • Sage
    [(2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8 for n in (2..60)] # G. C. Greubel, Dec 04 2019
    

Formula

a(n+2) = (period 8: repeat 1, 16, 1, 1, 1, 4, 1, 1)*A175628(n+1).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n+4) - a(n-4) = 0, 8, 8, ... = A168397.
From Colin Barker, Jan 26 2014: (Start)
a(n) = (n^2 -4)/4 for n even, a(n) = (n^2 +2*n -15)/4 for n odd.
G.f.: x^4*(3 + 2*x - 3*x^2)/ ((1-x)^3*(1+x)^2). (End)
a(n) = (2*n^2 + 2*n - 19 - (2*n - 11)*(-1)^n)/8. - Luce ETIENNE, Jul 26 2014
Sum_{n>=4} (-1)^n/a(n) = 11/48. - Amiram Eldar, Aug 21 2022

Extensions

More terms from Colin Barker, Jan 26 2014

A251091 a(n) = n^2 / gcd(n+2, 4).

Original entry on oeis.org

0, 1, 1, 9, 8, 25, 9, 49, 32, 81, 25, 121, 72, 169, 49, 225, 128, 289, 81, 361, 200, 441, 121, 529, 288, 625, 169, 729, 392, 841, 225, 961, 512, 1089, 289, 1225, 648, 1369, 361, 1521, 800, 1681, 441, 1849, 968, 2025, 529, 2209, 1152, 2401, 625, 2601, 1352
Offset: 0

Views

Author

Paul Curtz, May 08 2015

Keywords

Comments

A061038(n), which appears in 4*a(n) formula, is a permutation of n^2.
Origin. In December 2010, I wrote in my 192-page Exercise Book no. 5, page 41, the array (difference table of the first row):
1 0, 1/3, 1, 9/5, 8/3, 25/7, 9/2, 49/9, ...
-1, 1/3, 2/3, 4/5, 13/15, 19/21, 13/14, 17/18, 43/45, ...
Numerators are listed in A176126, denominators are in A064038, and denominator - numerator = 2, 2, 1, 1,... (A014695).
4/3, 1/3, 2/15, 1/15, 4/105, 1/42, 1/63, 1/90, 4/495, ...
-1, -1/5, -1/15, -1/35, -1/70, -1/126, -1/210, -1/330, -1/495, ...
where the denominators of the second row are listed in A000332.
Also for those of the inverse binomial transform
1, -1, 4/3, -1, 4/5, -2/3, 4/7, -1/2, 4/9, -2/5, 4/11, -1/3, ... ?
a(n) is the (n+1)-th term of the numerators of the first row.

Examples

			a(0) = 0/2, a(1) = 1/1, a(2) = 4/4, a(3) = 9/1.
		

Crossrefs

Programs

  • Magma
    [(1-(1/16)*(1+(-1)^n)*(5-(-1)^(n div 2)) )*n^2: n in [0..60]]; // Vincenzo Librandi, Jun 12 2015
  • Maple
    seq(seq((4*i+j-1)^2/[2,1,4,1][j],j=1..4),i=0..30); # Robert Israel, May 14 2015
  • Mathematica
    f[n_] := Switch[ Mod[n, 4], 0, n^2/2, 1, n^2, 2, n^2/4, 3, n^2]; Array[f, 50, 0] (* or *) Table[(4 i + j - 1)^2/{2, 1, 4, 1}[[j]], {i, 0, 12}, {j, 4}] // Flatten (* after Robert Israel *) (* or *) LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {0, 1, 1, 9, 8, 25, 9, 49, 32, 81, 25, 121}, 53] (* or *) CoefficientList[ Series[-((x (1 + x (1 + x (9 + x (8 + x (22 + x (6 + x (22 + x (8 + x (9 + x + x^2))))))))))/(-1 + x^4)^3), {x, 0, 52}], x] (* Robert G. Wilson v, May 19 2015 *)
  • PARI
    concat(0, Vec(-x*(x^10 + x^9 + 9*x^8 + 8*x^7 + 22*x^6 + 6*x^5 + 22*x^4 + 8*x^3 + 9*x^2 + x + 1) / ((x-1)^3*(x+1)^3*(x^2+1)^3) + O(x^100))) \\ Colin Barker, May 14 2015
    

Formula

a(n) = n^2/(period 4: repeat 2, 1, 4, 1).
a(4n) = 8*n^2, a(2n+1) = a(4n+2) = (2*n+1)^2.
a(n+4) = a(n) + 8*A060819(n).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12), n>11.
4*a(n) = (period 4: repeat 2, 1, 4, 1) * A061038(n).
G.f.: -x*(x^10+x^9+9*x^8+8*x^7+22*x^6+6*x^5+22*x^4+8*x^3+9*x^2+x+1) / ((x-1)^3*(x+1)^3*(x^2+1)^3). - Colin Barker, May 14 2015
a(2n) = A181900(n), a(2n+1) = A016754(n). [Bruno Berselli, May 14 2015]
a(n) = ( 1 - (1/16)*(1+(-1)^n)*(5-(-1)^(n/2)) )*n^2. - Bruno Berselli, May 14 2015
Sum_{n>=1} 1/a(n) = 13*Pi^2/48. - Amiram Eldar, Aug 12 2022

Extensions

Missing term (1521) inserted in the sequence by Colin Barker, May 14 2015
Definition uses a formula by Jean-François Alcover, Jul 01 2015
Keyword:mult added by Andrew Howroyd, Aug 06 2018
Previous Showing 21-30 of 32 results. Next