cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 50 results. Next

A387327 Number of ways to choose an integer partition of each prime factor of n (with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 15, 8, 9, 14, 56, 12, 101, 30, 21, 16, 297, 18, 490, 28, 45, 112, 1255, 24, 49, 202, 27, 60, 4565, 42, 6842, 32, 168, 594, 105, 36, 21637, 980, 303, 56, 44583, 90, 63261, 224, 63, 2510, 124754, 48, 225, 98, 891, 404, 329931, 54, 392, 120
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2025

Keywords

Examples

			The a(1) = 1 through a(7) = 15 ways:
  (1)  (2)   (3)    (2)(2)    (5)      (2)(3)     (7)
       (11)  (21)   (11)(2)   (32)     (11)(3)    (43)
             (111)  (2)(11)   (41)     (2)(21)    (52)
                    (11)(11)  (221)    (11)(21)   (61)
                              (311)    (2)(111)   (322)
                              (2111)   (11)(111)  (331)
                              (11111)             (421)
                                                  (511)
                                                  (2221)
                                                  (3211)
                                                  (4111)
                                                  (22111)
                                                  (31111)
                                                  (211111)
                                                  (1111111)
		

Crossrefs

For constant partitions we have A061142, for prime indices A355731.
For prime indices instead of factors we have A299200.
The version for distinct choices is A387133, zeros A387326.
A000041 counts integer partitions, strict A000009.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A387110 counts choices of distinct distinct integer partitions of each prime index.

Programs

  • Mathematica
    Table[Length[Tuples[IntegerPartitions/@Flatten[ConstantArray@@@FactorInteger[n]]]],{n,30}]

A079707 In prime factorization of n replace odd primes with their prime predecessor.

Original entry on oeis.org

1, 2, 2, 4, 3, 4, 5, 8, 4, 6, 7, 8, 11, 10, 6, 16, 13, 8, 17, 12, 10, 14, 19, 16, 9, 22, 8, 20, 23, 12, 29, 32, 14, 26, 15, 16, 31, 34, 22, 24, 37, 20, 41, 28, 12, 38, 43, 32, 25, 18, 26, 44, 47, 16, 21, 40, 34, 46, 53, 24, 59, 58, 20, 64, 33, 28, 61, 52, 38, 30, 67, 32, 71, 62, 18
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 31 2003

Keywords

Comments

Result after A061395(n)-1 iterations = A061142(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2, NextPrime[p, -1]]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, f[i,1], precprime(f[i,1]-1))^f[i,2]);} \\ Amiram Eldar, Nov 29 2022

Formula

a(n) <= n; a(n) < n iff n > 1 is odd; a(n) = n iff n = 2^k.
A001222(a(n)) = A001222(n).
For 3-smooth numbers: a(2^i * 3^j) = 2^(i+j).
Multiplicative with 2->2 and prime(k)->prime(k-1), k>1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime > 2} ((p^2-p)/(p^2 - prevprime(p))) = 0.3310558934..., where prevprime is A151799. - Amiram Eldar, Nov 29 2022

A089693 Numbers n such that phi(n) = 2^bigomega(n).

Original entry on oeis.org

1, 3, 10, 20, 30, 40, 60, 80, 120, 160, 240, 320, 480, 640, 960, 1280, 1920, 2560, 3840, 5120, 7680, 10240, 15360, 20480, 30720, 40960, 61440, 81920, 122880, 163840, 245760, 327680, 491520, 655360, 983040
Offset: 1

Views

Author

Benoit Cloitre, Jan 06 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[100000],EulerPhi[#]==2^PrimeOmega[#]&] (* or *) Join[{1,3,10},LinearRecurrence[{0,2},{20,30},20]] (* Harvey P. Dale, Mar 01 2012 *)

Formula

a(n) = 2*a(n-2) for n>5. [Harvey P. Dale, Mar 01 2012]
For n > 2, A001222(a(n)) = 1 + floor(n/2). - Enrique Pérez Herrero, Mar 28 2012
For n > 1, a(2n) = 5*2^n and a(2n+1) = 15*2^(n-1). - Enrique Pérez Herrero, Mar 28 2012

Extensions

More terms from Harvey P. Dale, Mar 01 2012

A166632 Totally multiplicative sequence with a(p) = 2*(p-1) for prime p.

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 12, 8, 16, 16, 20, 16, 24, 24, 32, 16, 32, 32, 36, 32, 48, 40, 44, 32, 64, 48, 64, 48, 56, 64, 60, 32, 80, 64, 96, 64, 72, 72, 96, 64, 80, 96, 84, 80, 128, 88, 92, 64, 144, 128
Offset: 1

Views

Author

Jaroslav Krizek, Oct 18 2009

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local f;
      mul((2*(f[1]-1))^f[2], f = ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, May 19 2016
  • Mathematica
    DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] := DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*2^(PrimeOmega[m]), {m, 1, 100}](* G. C. Greubel, May 19 2016, based on A003958 *)
    f[p_, e_] := (2*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 2*(p-1)*X))[n], ", ")) \\ Vaclav Kotesovec, Mar 08 2023

Formula

Multiplicative with a(p^e) = (2*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(p(k)-1))^e(k).
a(n) = A061142(n) * A003958(n) = 2^bigomega(n) * A003958(n) = 2^A001222(n) * A003958(n).
Dirichlet g.f.: Product_{p prime} 1/(1 - 2*(p-1)*p^(-s)). - Robert Israel, May 19 2016
From Vaclav Kotesovec, Mar 08 2023: (Start)
Dirichlet g.f.: zeta(s-1)^2 * Product_{p prime} (1 - (2 - p^(2-s))/(p^s-2*p+2)).
Let f(s) = Product_{p prime} (1 - (2 - p^(2-s)) / (p^s - 2*p + 2)).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = Product_{p prime} (1 - 2/(p^2 - 2*p + 2)) = 0.353804459718477500968617797456682002952375753701841967763205003892191...,
f'(2) = f(2) * Sum_{p prime} 2*log(p) / ((p-1) * (p^2 - 2*p + 2)) = 0.350193097012820163529213089258238034020398107720137317340667886409682...
and gamma is the Euler-Mascheroni constant A001620. (End)

A167294 Totally multiplicative sequence with a(p) = 2*(p-2) for prime p.

Original entry on oeis.org

1, 0, 2, 0, 6, 0, 10, 0, 4, 0, 18, 0, 22, 0, 12, 0, 30, 0, 34, 0, 20, 0, 42, 0, 36, 0, 8, 0, 54, 0, 58, 0, 36, 0, 60, 0, 70, 0, 44, 0, 78, 0, 82, 0, 24, 0, 90, 0, 100, 0, 60, 0, 102, 0, 108, 0, 68, 0, 114, 0, 118, 0, 40, 0, 132, 0, 130, 0, 84, 0, 138, 0, 142, 0
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *)
    f[p_, e_] := (2*(p-2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 19 2023 *)

Formula

Multiplicative with a(p^e) = (2*(p-2))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(p(k)-2))^e(k).
a(2k) = 0 for k >= 1.
a(n) = A061142(n) * A166586(n) = 2^bigomega(n) * A166586(n) = 2^A001222(n) * A166586(n).

A167303 Totally multiplicative sequence with a(p) = 2*(p+2) for prime p.

Original entry on oeis.org

1, 8, 10, 64, 14, 80, 18, 512, 100, 112, 26, 640, 30, 144, 140, 4096, 38, 800, 42, 896, 180, 208, 50, 5120, 196, 240, 1000, 1152, 62, 1120, 66, 32768, 260, 304, 252, 6400, 78, 336, 300, 7168, 86, 1440, 90, 1664, 1400, 400, 98, 40960, 324, 1568
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 07 2016 *)
    f[p_, e_] := (2*(p+2))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 18 2023 *)

Formula

Multiplicative with a(p^e) = (2*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(p(k)+2))^e(k).
a(n) = A061142(n) * A166590(n) = 2^bigomega(n) * A166590(n) = 2^A001222(n) * A166590(n).

A167312 Totally multiplicative sequence with a(p) = 2*(p-3) for prime p.

Original entry on oeis.org

1, -2, 0, 4, 4, 0, 8, -8, 0, -8, 16, 0, 20, -16, 0, 16, 28, 0, 32, 16, 0, -32, 40, 0, 16, -40, 0, 32, 52, 0, 56, -32, 0, -56, 32, 0, 68, -64, 0, -32, 76, 0, 80, 64, 0, -80, 88, 0, 64, -32, 0, 80, 100, 0, 64, -64, 0, -104, 112, 0, 116, -112, 0, 64, 80, 0, 128, 112
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 3)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 08 2016 *)
    f[p_, e_] := (2*(p-3))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 21 2023 *)

Formula

Multiplicative with a(p^e) = (2*(p-3))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(p(k)-3))^e(k).
a(3k) = 0 for k >= 1.
a(n) = A061142(n) * A166589(n) = 2^bigomega(n) * A166589(n) = 2^A001222(n) * A166589(n).

A167321 Totally multiplicative sequence with a(p) = 2*(p+3) for prime p.

Original entry on oeis.org

1, 10, 12, 100, 16, 120, 20, 1000, 144, 160, 28, 1200, 32, 200, 192, 10000, 40, 1440, 44, 1600, 240, 280, 52, 12000, 256, 320, 1728, 2000, 64, 1920, 68, 100000, 336, 400, 320, 14400, 80, 440, 384, 16000, 88, 2400, 92, 2800, 2304, 520, 100, 120000, 400, 2560
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 3)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 09 2016 *)
    f[p_, e_] := (2*(p+3))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2023 *)

Formula

Multiplicative with a(p^e) = (2*(p+3))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(p(k)+3))^e(k).
a(n) = A061142(n) * A166591(n) = 2^bigomega(n) * A166591(n) = 2^A001222(n) * A166591(n).

A167330 Totally multiplicative sequence with a(p) = 2*(2p-1) = 4p-2 for prime p.

Original entry on oeis.org

1, 6, 10, 36, 18, 60, 26, 216, 100, 108, 42, 360, 50, 156, 180, 1296, 66, 600, 74, 648, 260, 252, 90, 2160, 324, 300, 1000, 936, 114, 1080, 122, 7776, 420, 396, 468, 3600, 146, 444, 500, 3888, 162, 1560, 170, 1512, 1800, 540, 186, 12960, 676, 1944
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((2*fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *)
    f[p_, e_] := (4*p-2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 18 2023 *)
  • PARI
    a(n) = {my(f=factor(n)); for (k=1, #f~, f[k,1] = 4*f[k,1]-2;); factorback(f);} \\ Michel Marcus, Jun 06 2016

Formula

Multiplicative with a(p^e) = (2*(2p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(2*p(k)-1))^e(k).
a(n) = A061142(n) * A166651(n) = 2^bigomega(n) * A166651(n) = 2^A001222(n) * A166651(n).

A167331 Totally multiplicative sequence with a(p) = 2*(3p-1) = 6p-2 for prime p.

Original entry on oeis.org

1, 10, 16, 100, 28, 160, 40, 1000, 256, 280, 64, 1600, 76, 400, 448, 10000, 100, 2560, 112, 2800, 640, 640, 136, 16000, 784, 760, 4096, 4000, 172, 4480, 184, 100000, 1024, 1000, 1120, 25600, 220, 1120, 1216, 28000, 244, 6400, 256, 6400, 7168, 1360, 280
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((3*fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *)
    f[p_, e_] := (6*p-2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 18 2023 *)
  • PARI
    a(n) = {my(f=factor(n)); for (k=1, #f~, f[k,1] = 6*f[k,1]-2;); factorback(f);} \\ Michel Marcus, Jun 06 2016

Formula

Multiplicative with a(p^e) = (2*(3p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(3*p(k)-1))^e(k).
a(n) = A061142(n) * A166652(n) = 2^bigomega(n) * A166652(n) = 2^A001222(n) * A166652(n).
Previous Showing 31-40 of 50 results. Next