cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A105602 Divide each Fibonacci number by its primitive part.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 5, 1, 24, 1, 13, 10, 21, 1, 136, 1, 165, 26, 89, 1, 1008, 5, 233, 34, 1131, 1, 26840, 1, 987, 178, 1597, 65, 46512, 1, 4181, 466, 47355, 1, 1269736, 1, 53133, 10370, 28657, 1, 2179296, 13, 825275, 3194, 364179, 1, 14927768, 445
Offset: 1

Views

Author

Paul Barry, Apr 15 2005

Keywords

Comments

Sylvester dividends for Fibonacci numbers.
a(n)=1 for n=1, 4 and all primes, which is sequence A046022.

Crossrefs

Programs

  • Mathematica
    a[n_] := Fibonacci[n]/Product[Fibonacci[d]^MoebiusMu[n/d], {d, Divisors[n]}]; Table[a[n],{n,55}] (* James C. McMahon, Jan 25 2024 *)

Formula

a(n) = Fibonacci(n)/A061446(n).

A105603 Sylvester-Jacobsthal cyclotomic numbers.

Original entry on oeis.org

1, 1, 3, 5, 11, 7, 43, 17, 57, 31, 683, 13, 2731, 127, 331, 257, 43691, 73, 174763, 205, 5419, 2047, 2796203, 241, 1016801, 8191, 261633, 3277, 178956971, 151, 715827883, 65537, 1397419, 131071, 24214051, 4033, 45812984491, 524287, 22366891, 61681
Offset: 1

Views

Author

Paul Barry, Apr 15 2005

Keywords

Comments

Primitive parts of Jacobsthal numbers A001045.

Crossrefs

Cf. A020501, A001045, A061446 (with references), A008555.

Formula

a(n)=product{k=1..n-1, if(gcd(n, k)=1, 2+exp(2*pi*I*k/n), 1)}, I=sqrt(-1)
a(n) = (-1)^phi(n)*cyclotomic(n, -2) for n >= 2 (for n = 1 this would be 3), with phi(n) = A000010(n). - Wolfdieter Lang, Jan 19 2015

A178764 Ratio of the primitive part of Fibonacci(n) to the product of primitive prime factors of Fibonacci(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

T. D. Noe, Jun 10 2010

Keywords

Comments

Except for a(6), it can be shown that all terms are either 1 or prime. In the first 10^5 terms, only 151 are greater than 1.

Formula

a(n) = A061446(n) / A178763(n).

A250269 Primitive part of n! (for n>=1): n! = Product_{d|n} a(d).

Original entry on oeis.org

1, 2, 6, 12, 120, 60, 5040, 1680, 60480, 15120, 39916800, 55440, 6227020800, 8648640, 1816214400, 518918400, 355687428096000, 147026880, 121645100408832000, 55870214400, 1689515283456000, 14079294028800, 25852016738884976640000, 771008958720
Offset: 1

Views

Author

Matthew Vandermast, Dec 16 2014

Keywords

Comments

The title is analogous to the title of A061446.
For any integer sequence a, the sequence b such that b(n) = Product_{d|n} a(d) is a divisibility sequence. Not every divisibility sequence b corresponds to some integer sequence a such that b(n) = Product_{d|n} a(d), however.
This sequence is not itself a divisibility sequence; a(15) does not divide a(30), for example.

Examples

			The divisors of 10 are 1, 2, 5 and 10. 10! = a(1) * a(2) * a(5) * a(10) = 1 * 2 * 120 * 15120 = 3628800.
Between 1 and 10 inclusive, 4 integers are coprime to 10: 1, 3, 7 and 9. Let b(n) = lcm (1...n) = A003418(n), and let [x] denote the floor function. Then:
a(10) = b[10/1] * b[10/3] * b[10/7] * b[10/9]
"   "   = b(10) * b(3) * b(1) * b(1)
"   "   = 2520 * 6 * 1 * 1
"   "   = 15120.
		

Crossrefs

Cf. A000142, A075071. Subsequence of A250270.
Cf. A000010 (comments on product formulas), A008683.

Programs

  • Mathematica
    Array[Product[(d!)^MoebiusMu[#/d], {d, Divisors[#]}] &, 24] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    a(n)={my(r=1);fordiv(n,d,r*=d!^moebius(n/d));r} \\ Joerg Arndt, Jan 18 2015

Formula

a(n) = Product_{i = 1..n, gcd(n, i) = 1} lcm (1..floor(n/i)).
a(n) = Product_{i = 1..floor(n/2), gcd(n, i) = 1} lcm (1..floor(n/i)) (equivalent formula).
a(n) = n! iff n is prime.
a(n) = Product_{d|n} (d!)^moebius(n/d). - Joerg Arndt, Jan 18 2015
a(n) = Product_{k=1..n} (gcd(n,k)!)^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} ((n/gcd(n,k))!)^(mu(gcd(n,k))/phi(n/gcd(n,k))) where mu = A008683, phi = A000010. - Richard L. Ollerton, Nov 08 2021

A265575 LCM-transform of Euler totient numbers (A000010).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 11, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 2, 1, 13, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 41, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2016

Keywords

Crossrefs

Cf. A000010.
Other LCM-transforms are A061446, A265574, A265576, A265577, A265578.

Programs

  • Maple
    LCMXfm:=proc(a) local L,i,n,g,b;
    L:=nops(a);
    g:=Array(1..L,0); b:=Array(1..L,0);
    b[1]:=a[1]; g[1]:=a[1];
    for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od;
    lprint([seq(b[i],i=1..L)]);
    end;
    with(numtheory);
    t1:=[seq(phi(n),n=1..100)];
    LCMXfm(t1);
  • Mathematica
    LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n - 1], a[[n]]]; b[n] = g[n]/g[n - 1], {n, 2, L}]; Array[b, L]];
    LCMXfm[Table[EulerPhi[n], {n, 1, 100}]] (* Jean-François Alcover, Dec 05 2017, from Maple *)
  • PARI
    up_to = 10000;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    v265575 = LCMtransform(vector(up_to,i,eulerphi(i)));
    A265575(n) = v265575[n]; \\ Antti Karttunen, Nov 09 2018

A061488 Factorize the Fibonacci numbers in order, skipping F(0)-F(2), F(6)=8 and F(12)=144; at each step at least one new prime will occur; append to the sequence the smallest such new prime.

Original entry on oeis.org

2, 3, 5, 13, 7, 17, 11, 89, 233, 29, 61, 47, 1597, 19, 37, 41, 421, 199, 28657, 23, 3001, 521, 53, 281, 514229, 31, 557, 2207, 19801, 3571, 141961, 107, 73, 9349, 135721, 2161, 2789, 211, 433494437, 43, 109441, 139, 2971215073, 1103, 97, 101, 6376021
Offset: 3

Views

Author

N. J. A. Sloane, Nov 08 2001

Keywords

Comments

Carmichael showed that the sequence is well defined.
Same as A001578 without the "1" terms.
Given the definition, in particular omission of F(6) and F(12), setting offset=1 would be more adequate; offset=5 (= number of omitted terms) would give A001578 for n > 12 on. - M. F. Hasler, Oct 21 2012

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = First /@ FactorInteger[ Fibonacci[ n]]}, k = 1; lmt = 1 + Length@ p; While[k < lmt && MemberQ[lst, p[[k]]], k++]; If[k < lmt, AppendTo[lst, p[[k]]]]]; lst = {}; Do[ f[n], {n, 3, 51}]; lst (* Robert G. Wilson v, Oct 23 2012 *)

Formula

a(n) = A001578(n+2) from n=11 on. - M. F. Hasler, Oct 21 2012

Extensions

More terms from Vladeta Jovovic and Lior Manor, Nov 09 2001
Corrected by T. D. Noe, Feb 10 2007

A126025 Number of mappings f:{1,2,3,...,n} -> {1,2,3,...,n} such that gcd(f(x),f(y)) = f(gcd(x,y)) for all x,y in {1,2,3,...,n}.

Original entry on oeis.org

1, 3, 9, 26, 106, 191, 954, 2427, 8404, 15945, 111952, 141117, 1176623, 2270566, 4477947, 10345290, 104257447, 145407966, 1633452518, 2517488363, 5024167821, 9148333241, 120260250853
Offset: 1

Views

Author

John W. Layman, Feb 27 2007

Keywords

Comments

The greatest common divisor condition was suggested by A061446.

Crossrefs

Cf. A061446.
Cf. A000312.

Programs

  • Haskell
    a126025 n = h n1s 0 where
       h us c = if us == nns then c + 1 else h (succ us) (c + g) where
         g = if and [f x `gcd` f y == f (x `gcd` y) |
                     x <- [1 .. n - 1], y <- [x + 1 .. n]] then 1 else 0
         f = (us !!) . subtract 1
       succ (z:zs) = if z < n then (z + 1) : zs else 1 : succ zs
       n1s = take n [1, 1 ..]; nns = take n [n, n ..]
    -- Reinhard Zumkeller, May 04 2014

Extensions

a(10)-a(22) from Manfred Scheucher, Jun 06 2015
a(23) from Manfred Scheucher, Aug 13 2015

A159234 Composite numbers n such that 8*n^2-2*n-1 divides the primitive part U(n) of Fibonacci(n).

Original entry on oeis.org

27, 807, 1707, 2977, 3027, 3277, 4717, 5137, 5677, 5917, 5967, 6187, 7087, 7357, 7597, 7707, 8217, 9117, 9297, 9387, 9667, 9877, 9927, 9997, 10387, 11097, 11647, 11797, 12727, 13407, 13867, 15757, 15987, 16327, 16507, 16857, 17347, 17767, 18237, 18817, 18997
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 06 2009

Keywords

Crossrefs

Subsequence of A159259.

Programs

  • Mathematica
    lst = {1}; Do[f = Fibonacci[a]; Do[f = f/GCD[f, lst[[d]]], {d, Most[Divisors[a]]}]; AppendTo[lst, f], {a, 2, 19000}]; Flatten[Table[If[! PrimeQ[n] && Mod[lst[[n]], 8*n^2 - 2*n - 1] == 0, n, {}], {n, 19000}]] (* Arkadiusz Wesolowski, Dec 12 2011 *)

A253807 Primitive part of A006190(n), n >= 1.

Original entry on oeis.org

1, 3, 10, 11, 109, 12, 1189, 119, 1297, 131, 141481, 118, 1543321, 1429, 15445, 14159, 183642229, 1299, 2003229469, 14041, 1837837, 170039, 238367471761, 14158, 23854956949, 1854841, 2186871697, 1670761, 309400794703549
Offset: 1

Views

Author

Wolfdieter Lang, Jan 19 2015

Keywords

Comments

A006190(n) = Product_{k divides n} a(k), n >= 1.

Crossrefs

Programs

  • Mathematica
    (* b = A006190 *) b[0] = 0; b[1] = 1; b[n_] := b[n] = 3*b[n-1] + b[n-2]; a[n_] := Product[b[d]^MoebiusMu[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 20 2015 *)

Formula

a(n) = ((3-sqrt(13))/2)^phi(n)*cyclotomic(n, -(11 - 3*sqrt13)/2) for n >= 1 and a(1) = 1, where phi is Euler's totient A000010 and the coefficient table for the cyclotomic polynomials is given in A013595.
a(n) = Product_{d|n} A006190(d)^mu(n/d), where mu = A008683, n >= 1.

A265577 LCM-transform of Yellowstone permutation A098550.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 5, 7, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 3, 11, 13, 1, 1, 1, 1, 1, 1, 17, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 19, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 3, 1, 29, 31, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2016

Keywords

Crossrefs

Cf. A064413.
Other LCM-transforms are A061446, A265574, A265575, A265576.

Programs

  • Maple
    LCMXfm:=proc(a) local L,i,n,g,b;
    L:=nops(a);
    g:=Array(1..L,0); b:=Array(1..L,0);
    b[1]:=a[1]; g[1]:=a[1];
    for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od;
    lprint([seq(b[i],i=1..L)]);
    end;
    # let t1 contain the first 100 terms of A098550
    LCMXfm(t1);
  • Mathematica
    LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n-1], a[[n]]]; b[n] = g[n]/g[n-1], {n, 2, L}]; Array[b, L]];
    y[n_ /; n <= 3] := n; y[n_] := y[n] = For[k = 1, True, k++, If[ FreeQ[ Array[y, n-1], k], If[GCD[k, y[n-1]] == 1 && GCD[k, y[n-2]] > 1, Return[k]]]];
    Yperm = Array[y, 100];
    LCMXfm[Yperm] (* Jean-François Alcover, Dec 03 2017 *)
Previous Showing 11-20 of 27 results. Next