cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A238243 A recursive sequence: a(n) = Fibonacci(n)*a(n-1) + 2.

Original entry on oeis.org

1, 3, 8, 26, 132, 1058, 13756, 288878, 9821854, 540201972, 48077975510, 6923228473442, 1613112234311988, 608143312335619478, 370967420524727881582, 366144844057906419121436, 584733315960476551336933294, 1510950888441871408654635631698
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 20 2014

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==Fibonacci[n]*a[n-1]+2,a[1]==1},a,{n,1,20}]

Formula

a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * (2*A101689-1) = 5.4087126382942177293... is product of Fibonacci factorial constant (see A062073) and -1+2*sum_{n>=1} 1/product(A000045(k), k=1..n).

A253267 Decimal expansion of a constant related to A152686.

Original entry on oeis.org

1, 0, 9, 6, 4, 1, 4, 0, 7, 2, 5, 0, 7, 3, 2, 4, 4, 2, 3, 1, 1, 0, 2, 1, 5, 9, 9, 8, 8, 4, 4, 4, 4, 0, 3, 7, 5, 9, 4, 5, 9, 2, 9, 6, 0, 8, 7, 7, 7, 6, 9, 7, 9, 3, 8, 4, 6, 5, 0, 5, 6, 8, 1, 3, 7, 8, 0, 1, 4, 0, 5, 2, 1, 9, 3, 3, 3, 3, 6, 7, 0, 7, 3, 1, 2, 6, 9, 2, 8, 7, 5, 4, 6, 4, 1, 6, 9, 3, 7, 3, 9, 4, 1, 4, 4
Offset: 1

Views

Author

Vaclav Kotesovec, May 01 2015

Keywords

Examples

			1.0964140725073244231102159988444403759459296087776979384650568137801405219...
		

Crossrefs

Programs

  • Mathematica
    (* Iterations: *) Do[Print[N[Product[Product[Fibonacci[k],{k,1,j}],{j,1,n}] / (GoldenRatio^(n*(n+1)*(n+2)/6) * QPochhammer[-1/GoldenRatio^2]^n / 5^(n*(n+1)/4)),120]],{n,100,1000,100}]

Formula

Equals limit n->infinity A152686(n) / (((1+sqrt(5))/2)^(n*(n+1)*(n+2)/6) * A062073^n / 5^(n*(n+1)/4)).

A062072 Continued fraction expansion of Fibonacci factorial constant.

Original entry on oeis.org

1, 4, 2, 2, 3, 2, 15, 9, 1, 2, 1, 2, 15, 7, 6, 21, 3, 5, 1, 23, 1, 11, 1, 7, 1, 3, 1, 12, 2, 1, 1, 1, 7, 1, 3, 1, 12, 2, 1, 2, 2, 9, 27, 1, 1, 1, 1, 2, 19, 3, 8, 1, 1, 15, 3, 1, 2, 1, 1, 1, 3, 2, 3, 8, 1, 1, 14, 1, 49, 2, 1, 17, 4, 2, 1, 2, 2, 1, 3, 1, 5, 1, 1, 3, 1, 2, 1, 4, 1, 2, 5, 1, 3, 2, 1, 1, 2, 6
Offset: 0

Views

Author

Jason Earls, Jun 27 2001

Keywords

Examples

			1.2267420107203532444176302...
		

References

  • R. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.

Crossrefs

Cf. A062073 (decimal expansion).

Programs

  • PARI
    \p 500 a=-1/(1/2+sqrt(5)/2)^2; contfrac(prod(n=1,17000,(1-a^n)))
    
  • PARI
    { allocatemem(932245000); default(realprecision, 5300); p=-1/(1/2 + sqrt(5)/2)^2; x=contfrac(prodinf(k=1, 1-p^k)); for (n=1, 5000, write("b062072.txt", n-1, " ", x[n])) } \\ Harry J. Smith, Jul 31 2009

Formula

C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024

A182562 Number of ways to place k non-attacking semi-knights on an n x n chessboard, sum over all k>=0.

Original entry on oeis.org

2, 16, 288, 11664, 1458000, 506250000, 414720000000, 869730877440000, 5045702916833280000, 77297454895962562560000, 3017525202366485003182080000, 307389127582207654481154908160000, 83016370640108703579427655610531840000, 58770343311359208383258439665073059266560000
Offset: 1

Views

Author

Vaclav Kotesovec, May 05 2012

Keywords

Comments

Semi-knight is a semi-leaper [1,2]. Moves of a semi-knight are allowed only in [2,1] and [-2,-1]. See also semi-bishops (A187235).

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ[n],Fibonacci[n/2+2]^(n+2)*Product[Fibonacci[j+2]^4,{j,1,n/2-1}],Fibonacci[(n+1)/2+2]^((n+1)/2)*Fibonacci[(n-1)/2+2]^((n-1)/2)*Product[Fibonacci[j+2]^4,{j,1,(n-1)/2}]],{n,1,20}]

Formula

a(n) = F(n/2+2)^(n+2)*prod(j=1,n/2-1,F(j+2)^4) if n is even, F((n+1)/2+2)^((n+1)/2)*F((n-1)/2+2)^((n-1)/2)*prod(j=1,(n-1)/2,F(j+2)^4) if n is odd, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) is asymptotic to C^4*((1+sqrt(5))/2)^((n+2)*(n+4))/5^(3/2*(n+2)), where C=1.226742010720353244... is Fibonacci Factorial Constant, see A062073.

A191994 (Sum of first n Fibonacci numbers) times (product of first n Fibonacci numbers).

Original entry on oeis.org

1, 2, 8, 42, 360, 4800, 102960, 3538080, 196035840, 17520703200, 2529842515200, 590412901478400, 222813349683724800, 136001024583142118400, 134285149587387262464000, 214504624277084224347264000, 554361997358383529330695680000
Offset: 1

Views

Author

Keywords

Comments

Let F(1), F(2), F(3), ... be the Fibonacci numbers 1, 1, 2, .... For k=1, we define the tree T(1) the path on two vertices with one identified as the root r. We assign the edge-weight F(1). T(2) is obtained from T(1) by attaching F(2) vertex to the pendents in T(1) except r. In T(2), r is retained as in T(1) and the new edge-weight is assigned as F(2). For k>1, T(k) is obtained from T(k-1) by attaching F(k) vertices to pendents in T(k-1) except r. In T(k), r is retained as in T(k-1) and all the new edge-weights are assigned F(k). With D(1)=1, for k>1 let D(k)=Sum of all distances d(r,x) taken across all vertices x in T(k). By induction it follows that for k>1, D(k)-D(k-1) is this sequence.
Retaining the notation of D(k) above, it follows, for k>1, that if D(k)=a(1)F(1)+ - - - +a(k)F(k) then D(k+1)=b(1)F(1)+ - - - +b(k)F(k)+b(k+1)F(k+1) where b(k+1) is the number of leaf nodes in T(k+1).

Crossrefs

Cf. A000071 (sum of Fibonacci numbers), A003266 (product of Fibonacci numbers).
Cf. A062073 (Fibonacci factorial constant).

Programs

Formula

a(n) ~ C*sqrt(phi^(n^2 + 3*n + 4)/5^(n+1)) where C = A062073 and phi = (1+sqrt(5))/2.
a(n) = (F(n+2)-1) * Product_{k=1..n} F(k). - Franklin T. Adams-Watters, Jun 23 2011

A382910 a(n) = A003266(n)^2.

Original entry on oeis.org

1, 1, 1, 4, 36, 900, 57600, 9734400, 4292870400, 4962558182400, 15011738501760000, 118907980672440960000, 2465675887223735746560000, 133859078241489389944995840000, 19025256931384645503492313743360000, 7079298104168226591849489943904256000000, 6896432754839457130755425769163265163264000000
Offset: 0

Views

Author

Edwin Hermann, Apr 08 2025

Keywords

Comments

For n>=3 number of valid symmetrical change ringing methods on n bells with the shortest number of rows per lead where the treble plain hunts out to the back. See Wikipedia and the Polster and Ross link for an explanation of bell ringing terminology.

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=0, 1, a(n-1)*(<<0|1>, <1|1>>^n)[1, 2]^2) end:
    seq(a(n), n=0..16);  # Alois P. Heinz, Apr 14 2025
  • Mathematica
    k = 1; {1, 1}~Join~Reap[Do[k *= Fibonacci[n]; Sow[k^2], {n, 16}] ][[-1, 1]] (* Michael De Vlieger, Apr 14 2025 *)

Formula

a(n) = Product_{j=1..n} Fibonacci(j)^2.
a(0) = 1; a(n) = a(n-1)*A007598(n). - Hugo Pfoertner, Apr 13 2025
a(n) ~ c^2 * phi^(n*(n+1)) / 5^n where phi is the golden ratio (A001622) and c = A062073. - Amiram Eldar, Aug 18 2025

A094221 1/detM(n) where M(n) is the n X n matrix m(i,j)=F(i)/F(i+j-1) and F(i)=i-th Fibonacci number.

Original entry on oeis.org

1, -2, -180, 2808000, 63248290560000, -13040516214928232110080000, -173699422048124050990739961787485511680000, 1013027110717881203216509560866301885575342298295136595148800000
Offset: 1

Views

Author

Benoit Cloitre, May 28 2004

Keywords

Crossrefs

Cf. A062381.

Programs

  • Mathematica
    Table[(-1)^Floor[n/2] * Product[Fibonacci[k]^k,{k,1,n-1}] * Product[Fibonacci[k]^(2*n-k),{k,n,2*n-1}] / Product[Fibonacci[k],{k,1,n}] / Product[Product[Fibonacci[k],{k,1,j-1}],{j,1,n}]^2,{n,1,10}] (* Vaclav Kotesovec, May 01 2015 *)
  • PARI
    a(n)=1/matdet(matrix(n,n,i,j,fibonacci(i)/(fibonacci(i+j-1))))

Formula

a(n) = A062381(n)/A003266(n). - corrected by Vaclav Kotesovec, May 01 2015
a(n) ~ (-1)^floor(n/2) * A253270 * ((1+sqrt(5))/2)^(n*(4*n^2 - 3*n - 1)/6) / (A253267^2 * A062073^(2*n-1)). - Vaclav Kotesovec, May 01 2015

A241990 Decimal expansion of 'delta', a constant arising in the asymptotics of the regularized product of the Fibonacci numbers.

Original entry on oeis.org

8, 9, 9, 2, 1, 2, 6, 8, 0, 7, 8, 5, 5, 0, 0, 8, 8, 6, 2, 5, 7, 6, 9, 8, 8, 3, 8, 7, 7, 5, 2, 8, 8, 1, 8, 2, 4, 3, 5, 0, 4, 5, 4, 1, 1, 7, 0, 6, 8, 4, 8, 4, 9, 8, 1, 7, 2, 6, 5, 6, 1, 5, 1, 4, 9, 4, 7, 5, 0, 8, 1, 8, 8, 1, 8, 6, 9, 7, 0, 9, 6, 1, 3, 2, 7, 1, 5, 9, 5, 5, 8, 3, 6, 8, 9, 3, 9, 9, 8, 3, 5, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Aug 11 2014

Keywords

Examples

			0.899212680785500886257698838775288182435045411706848498172656...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5 Fibonacci factorials, p. 10.

Crossrefs

Cf. A062073.

Programs

  • Mathematica
    c = QPochhammer[-1/GoldenRatio^2]; delta = 5^(1/4)*Exp[-Log[5]^2/(8*Log[GoldenRatio])]*c/GoldenRatio^(1/12); RealDigits[delta, 10, 103] // First

Formula

delta = 5^(1/4)*exp(-log(5)^2/(8*log(phi)))*c/phi^(1/12), where phi is the golden ratio and c is the Fibonacci factorial constant (c = A062073 = 1.226742...).

A271421 a(n) = fibonorial(3*n)/(fibonorial(2*n+1)*fibonorial(n+1)), where fibonorial(n) = A003266(n).

Original entry on oeis.org

1, 4, 119, 23496, 32149806, 300214157831, 19246160432331107, 8451529006578585976752, 25443734373070679510011112460, 524973397889459587964008354031908560, 74243674067972394056586805754940632245000310, 71965837912588688126721254257169744333502564695515911
Offset: 1

Views

Author

Vladimir Reshetnikov, May 21 2016

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5.

Crossrefs

Programs

  • Mathematica
    Table[Fibonorial[3 n]/(Fibonorial[2 n + 1] Fibonorial[n + 1]), {n, 1, 30}] (* The sequence itself *)
    QPochhammer[-1/GoldenRatio^2] (* The Fibonacci factorial constant C in the asymptotic expansion *)

Formula

a(n) ~ 5*phi^(2*n^2 - 3*n - 2)/C where phi = (1+sqrt(5))/2, and C = (-1/phi^2; -1/phi^2)_inf is the Fibonacci factorial constant whose decimal expansion is given in A062073.

A276499 Decimal expansion of Fibonorial(1/2).

Original entry on oeis.org

9, 8, 2, 6, 0, 9, 8, 2, 5, 0, 1, 3, 2, 6, 4, 3, 1, 1, 2, 2, 3, 7, 7, 4, 8, 0, 5, 6, 0, 5, 7, 4, 9, 1, 0, 9, 4, 6, 5, 3, 8, 0, 9, 7, 2, 4, 8, 9, 9, 6, 9, 4, 4, 3, 0, 0, 6, 3, 9, 9, 3, 6, 2, 1, 9, 2, 8, 9, 1, 5, 8, 2, 5, 1, 5, 5, 0, 2, 7, 1, 9, 3, 4, 4, 9, 4, 2
Offset: 0

Views

Author

Vladimir Reshetnikov, Sep 05 2016

Keywords

Comments

This constant can be thought of as A003266(1/2).
The fibonorial of (not necessarily an integer) x is defined as x!F = (phi^(x*(x+1)/2) / F(x+1)) * Product{n=1..inf} F(n+1)^(x+1)/(F(n)^x * F(x+n+1)), where F(x) = (phi^x - cos(Pi*x)/phi^x)/sqrt(5), where phi = (1+sqrt(5))/2 is the golden ratio. It satisfies the recurrence 0!_F = 1, x!_F = (x-1)!_F * F(x), and agrees with A003266(x) at integer points.

Examples

			0.98260982501326431122377480560574910946538...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[GoldenRatio^(3/8) QPochhammer[-1/GoldenRatio^2]/5^(1/4), 100]][[1]]

Formula

Fibonorial(1/2) = phi^(3/8) * C / 5^(1/4), where C = A062073 is the Fibonacci factorial constant.
Previous Showing 21-30 of 33 results. Next