cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A206296 Prime factorization representation of Fibonacci polynomials: a(0) = 1, a(1) = 2, and for n > 1, a(n) = A003961(a(n-1)) * a(n-2).

Original entry on oeis.org

1, 2, 3, 10, 63, 2750, 842751, 85558343750, 2098355820117528699, 769999781728184386440152910156250, 2359414683424785920146467280333749864720543920418139851
Offset: 0

Views

Author

Clark Kimberling, Feb 05 2012

Keywords

Comments

These are numbers matched to the Fibonacci polynomials according to the scheme explained in A206284 (see also A104244). In this case, the exponent of the k-th prime p_k in the prime factorization of a(n) indicates the coefficient of term x^(k-1) in the n-th Fibonacci polynomial. See the examples.

Examples

			n    a(n)   prime factorization    Fibonacci polynomial
------------------------------------------------------------
0       1   (empty)                F_0(x) = 0
1       2   p_1                    F_1(x) = 1
2       3   p_2                    F_2(x) = x
3      10   p_3 * p_1              F_3(x) = x^2 + 1
4      63   p_4 * p_2^2            F_4(x) = x^3 + 2x
5    2750   p_5 * p_3^3 * p_1      F_5(x) = x^4 + 3x^2 + 1
6  842751   p_6 * p_4^4 * p_2^3    F_6(x) = x^5 + 4x^3 + 3x
		

Crossrefs

Other such mappings:
polynomial sequence integer sequence
-----------------------------------------
x^n A000040
(x+1)^n A007188
n*x^(n-1) A062457
(1-x^n)/(1-x) A002110
n + (n-1)x + ... +x^n A006939
Stern polynomials A260443

Programs

  • Mathematica
    c[n_] := CoefficientList[Fibonacci[n, x], x]
    f[n_] := Product[Prime[k]^c[n][[k]], {k, 1, Length[c[n]]}]
    Table[f[n], {n, 1, 11}]  (* A206296 *)
  • Python
    from functools import reduce
    from sympy import factorint, prime, primepi
    from operator import mul
    def a003961(n):
        F=factorint(n)
        return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F])
    l=[1, 2]
    for n in range(2, 11):
        l.append(a003961(l[n - 1])*l[n - 2])
    print(l) # Indranil Ghosh, Jun 21 2017

Formula

From Antti Karttunen, Jul 29 2015: (Start)
a(0) = 1, a(1) = 2, and for n >= 2, a(n) = A003961(a(n-1)) * a(n-2).
Other identities. For all n >= 0:
A001222(a(n)) = A000045(n). [When each polynomial is evaluated at x=1.]
A048675(a(n)) = A000129(n). [at x=2.]
A090880(a(n)) = A006190(n). [at x=3.]
(End)

Extensions

a(0) = 1 prepended (to indicate 0-polynomial), Name changed, Comments and Example section rewritten by Antti Karttunen, Jul 29 2015

A352830 Numbers whose weakly increasing prime indices y have no fixed points y(i) = i.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

First differs from A325128 in lacking 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The terms together with their prime indices begin:
      1: {}        35: {3,4}     69: {2,9}     105: {2,3,4}
      3: {2}       37: {12}      71: {20}      107: {28}
      5: {3}       39: {2,6}     73: {21}      109: {29}
      7: {4}       41: {13}      77: {4,5}     111: {2,12}
     11: {5}       43: {14}      79: {22}      113: {30}
     13: {6}       47: {15}      83: {23}      115: {3,9}
     15: {2,3}     49: {4,4}     85: {3,7}     119: {4,7}
     17: {7}       51: {2,7}     87: {2,10}    121: {5,5}
     19: {8}       53: {16}      89: {24}      123: {2,13}
     21: {2,4}     55: {3,5}     91: {4,6}     127: {31}
     23: {9}       57: {2,8}     93: {2,11}    129: {2,14}
     25: {3,3}     59: {17}      95: {3,8}     131: {32}
     29: {10}      61: {18}      97: {25}      133: {4,8}
     31: {11}      65: {3,6}    101: {26}      137: {33}
     33: {2,5}     67: {19}     103: {27}      139: {34}
		

Crossrefs

* = unproved
These partitions are counted by A238394, strict A025147.
These are the zeros of A352822.
*The reverse version is A352826, counted by A064428 (strict A352828).
*The complement reverse version is A352827, counted by A001522.
The complement is A352872, counted by A238395.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]==0&]

A352872 Numbers whose weakly increasing prime indices y have a fixed point y(i) = i.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

First differs from A118672 in having 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      2: {1}           28: {1,1,4}         56: {1,1,1,4}
      4: {1,1}         30: {1,2,3}         58: {1,10}
      6: {1,2}         32: {1,1,1,1,1}     60: {1,1,2,3}
      8: {1,1,1}       34: {1,7}           62: {1,11}
      9: {2,2}         36: {1,1,2,2}       63: {2,2,4}
     10: {1,3}         38: {1,8}           64: {1,1,1,1,1,1}
     12: {1,1,2}       40: {1,1,1,3}       66: {1,2,5}
     14: {1,4}         42: {1,2,4}         68: {1,1,7}
     16: {1,1,1,1}     44: {1,1,5}         70: {1,3,4}
     18: {1,2,2}       45: {2,2,3}         72: {1,1,1,2,2}
     20: {1,1,3}       46: {1,9}           74: {1,12}
     22: {1,5}         48: {1,1,1,1,2}     75: {2,3,3}
     24: {1,1,1,2}     50: {1,3,3}         76: {1,1,8}
     26: {1,6}         52: {1,1,6}         78: {1,2,6}
     27: {2,2,2}       54: {1,2,2,2}       80: {1,1,1,1,3}
For example, the multiset {2,3,3} with Heinz number 75 has a fixed point at position 3, so 75 is in the sequence.
		

Crossrefs

* = unproved
These partitions are counted by A238395, strict A096765.
These are the nonzero positions in A352822.
*The complement reverse version is A352826, counted by A064428.
*The reverse version is A352827, counted by A001522 (strict A352829).
The complement is A352830, counted by A238394 (strict A025147).
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>0&]

A285332 a(0) = 1, a(1) = 2, a(2n) = A019565(a(n)), a(2n+1) = A065642(a(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 8, 15, 12, 14, 27, 10, 25, 7, 16, 210, 45, 35, 18, 105, 28, 462, 81, 21, 20, 154, 125, 30, 49, 11, 32, 10659, 420, 910, 75, 78, 175, 33, 24, 3094, 315, 385, 56, 780045, 924, 374, 243, 110, 63, 55, 40, 4389, 308, 170170, 625, 1155, 60, 286, 343, 42, 121, 13, 64, 54230826, 31977, 28405, 630, 1330665, 1820, 714
Offset: 0

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is produced as A019565(n), and each right hand child as A065642(n), when the parent node contains n >= 2:
1
|
...................2...................
3 4
6......../ \........9 5......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
15 12 14 27 10 25 7 16
210 45 35 18 105 28 462 81 21 20 154 125 30 49 11 32
etc.
Where will 38 appear in this tree? It is a reasonable assumption that by iterating A087207 starting from 38, as A087207(38) = 129, A087207(129) = 8194, A087207(8194) = 1501199875790187, ..., we will eventually hit a prime A000040(k), most likely with a largish index k. This prime occurs at the penultimate edge at right, as a(A000918(k)) = a((2^k)-2), and thus 38 occurs somewhere below it as a(m) = 38, m > k. All the numbers that share prime factors with 38, namely 76, 152, 304, 608, 722, ..., occur similarly late in this tree, as they form the rightward branch starting from 38. Alternatively, by iterating A285330 (each iteration moves one step towards the root) starting from 38, we might instead first hit some power of 3, or say, one of the terms of A033845 (the rightward branch starting from 6), in which case the first prime encountered would be a(2)=3 and 38 would appear on the left-hand side instead of the right-hand side subtree.
As long as it remains conjecture that A019565 has no cycles, it is certainly also an open question whether this is a permutation of the natural numbers: If A019565 has any cycles, then neither any of the terms in those cycles nor any A065642-trajectories starting from those terms (that is, numbers sharing same prime factors) may occur in this tree.
Sequence exhibits some outrageous swings, for example, a(703) = 224, but a(704) is 1427 decimal digits (4739 binary digits) long, thus it no longer fits into a b-file.
However, the scatter plot of A286543 gives some flavor of the behavior of this sequence even after that point. - Antti Karttunen, Dec 25 2017

Crossrefs

Inverse: A285331.
Compare also to permutation A285112 and array A285321.

Programs

  • Mathematica
    Block[{a = {1, 2}}, Do[AppendTo[a, If[EvenQ[i], Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[a[[i/2 + 1]], 2], If[# == 1, 1, Function[{n, c}, SelectFirst[Range[n + 1, n^2], Times @@ FactorInteger[#][[All, 1]] == c &]] @@ {#, Times @@ FactorInteger[#][[All, 1]]}] &[a[[(i - 1)/2 + 1]] ] ]], {i, 2, 70}]; a] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); };
    A285332(n) = { if(n<=1,n+1,if(!(n%2),A019565(A285332(n/2)),A065642(A285332((n-1)/2)))); };
    for(n=0, 4095, write("b285332.txt", n, " ", A285332(n)));
    
  • Python
    from operator import mul
    from sympy import prime, primefactors
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    def a(n):
        if n<2: return n + 1
        if n%2==0: return a019565(a(n//2))
        else: return a065642(a((n - 1)//2))
    print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 18 2017
  • Scheme
    ;; With memoization-macro definec.
    (definec (A285332 n) (cond ((<= n 1) (+ n 1)) ((even? n) (A019565 (A285332 (/ n 2)))) (else (A065642 (A285332 (/ (- n 1) 2))))))
    

Formula

a(0) = 1, a(1) = 2, a(2n) = A019565(a(n)), a(2n+1) = A065642(a(n)).
For n >= 0, a(2^n) = A109162(2+n). [The left edge of the tree.]
For n >= 0, a(A000225(n)) = A000079(n). [Powers of 2 occur at the right edge of the tree.]
For n >= 2, a(A000918(n)) = A000040(n). [And the next vertices inwards contain primes.]
For n >= 2, a(A036563(1+n)) = A001248(n). [Whose right children are their squares.]
For n >= 0, a(A055010(n)) = A000244(n). [Powers of 3 are at the rightmost edge of the left subtree.]
For n >= 2, a(A129868(n-1)) = A062457(n).
A048675(a(n)) = A285333(n).
A046523(a(n)) = A286542(n).

A324525 Numbers divisible by prime(k)^k for each prime index k.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 27, 32, 36, 54, 64, 72, 81, 108, 125, 128, 144, 162, 216, 243, 250, 256, 288, 324, 432, 486, 500, 512, 576, 625, 648, 729, 864, 972, 1000, 1024, 1125, 1152, 1250, 1296, 1458, 1728, 1944, 2000, 2048, 2187, 2250, 2304, 2401, 2500, 2592
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.
Also Heinz numbers of integer partitions where the multiplicity of k is at least k (A117144). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins as follows. For example, 36 = prime(1) * prime(1) * prime(2) * prime(2) is a term because the prime multiplicities are {2,2}, which are greater than or equal to the prime indices {1,2}.
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   18: {1,2,2}
   27: {2,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   54: {1,2,2,2}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
		

Crossrefs

Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Programs

  • Maple
    q:= n-> andmap(i-> i[2]>=numtheory[pi](i[1]), ifactors(n)[2]):
    select(q, [$1..3000])[];  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>=PrimePi[p]]&]
    seq[max_] := Module[{ps = {2}, p, s = {1}, s1, s2, emax}, While[ps[[-1]]^Length[ps] < max, AppendTo[ps, NextPrime[ps[[-1]]]]]; Do[p = ps[[k]]; emax = Floor[Log[p, max]]; s1 = Join[{1}, p^Range[k, emax]]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &]; s = Union[s, s2], {k, 1, Length[ps]}]; s]; seq[3000] (* Amiram Eldar, Nov 23 2020 *)

Formula

Closed under multiplication.
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^(k-1) * (prime(k)-1)) = 2.35782843100111139159... - Amiram Eldar, Nov 23 2020

A324524 Numbers where every prime index divides its multiplicity in the prime factorization. Numbers divisible by a power of prime(k)^k for each prime index k.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 125, 128, 144, 162, 250, 256, 288, 324, 500, 512, 576, 648, 729, 1000, 1024, 1125, 1152, 1296, 1458, 2000, 2048, 2250, 2304, 2401, 2592, 2916, 4000, 4096, 4500, 4608, 4802, 5184, 5832, 6561, 8000, 8192, 9000, 9216
Offset: 1

Views

Author

Gus Wiseman, Mar 07 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.
Also Heinz numbers of integer partitions in which every part divides its multiplicity (counted by A001156). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A062457.

Examples

			The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2).
    1: {}
    2: {1}
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   18: {1,2,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   64: {1,1,1,1,1,1}
   72: {1,1,1,2,2}
   81: {2,2,2,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  162: {1,2,2,2,2}
  250: {1,3,3,3}
  256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Range of values of A090884.
Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.

Programs

  • Maple
    q:= n-> andmap(i-> irem(i[2], numtheory[pi](i[1]))=0, ifactors(n)[2]):
    select(q, [$1..10000])[];  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>Divisible[k,PrimePi[p]]]&]
    v = Join[{1}, Prime[(r = Range[10])]^r]; n = Length[v]; vmax = 10^4; s = {1}; Do[v1 = v[[k]]; rmax = Floor[Log[v1, vmax]]; s1 = v1^Range[0, rmax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= vmax &]; s = Union[s, s2], {k, 2, n}]; Length[s] (* Amiram Eldar, Sep 30 2020 *)

Formula

Closed under multiplication.
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1/(1-prime(k)^(-k)) = 2.26910478689594012492... - Amiram Eldar, Sep 30 2020

A324571 Numbers whose ordered prime signature is equal to the set of distinct prime indices in decreasing order.

Original entry on oeis.org

1, 2, 9, 12, 40, 112, 125, 352, 360, 675, 832, 1008, 2176, 2401, 3168, 3969, 4864, 7488, 11776, 14000, 19584, 29403, 29696, 43776, 44000, 63488, 75600, 104000, 105984, 123201, 151552, 161051, 214375, 237600, 267264, 272000, 335872, 496125, 561600, 571392, 608000
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679). The increasing case is A109298.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base.
Also Heinz numbers of the integer partitions counted by A324572. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Each finite set of positive integers determines a unique term with those prime indices. For example, corresponding to {1,2,4,5} is 1397088 = prime(1)^5 * prime(2)^4 * prime(4)^2 * prime(5)^1.

Examples

			The sequence of terms together with their prime indices begins as follows. For example, we have 40: {1,1,1,3} because 40 = prime(1) * prime(1) * prime(1) * prime(3).
      1: {}
      2: {1}
      9: {2,2}
     12: {1,1,2}
     40: {1,1,1,3}
    112: {1,1,1,1,4}
    125: {3,3,3}
    352: {1,1,1,1,1,5}
    360: {1,1,1,2,2,3}
    675: {2,2,2,3,3}
    832: {1,1,1,1,1,1,6}
   1008: {1,1,1,1,2,2,4}
   2176: {1,1,1,1,1,1,1,7}
   2401: {4,4,4,4}
   3168: {1,1,1,1,1,2,2,5}
   3969: {2,2,2,2,4,4}
   4864: {1,1,1,1,1,1,1,1,8}
   7488: {1,1,1,1,1,1,2,2,6}
  11776: {1,1,1,1,1,1,1,1,1,9}
  14000: {1,1,1,1,3,3,3,4}
  19584: {1,1,1,1,1,1,1,2,2,7}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Reverse[PrimePi/@First/@If[#==1,{},FactorInteger[#]]]==Last/@If[#==1,{},FactorInteger[#]]&]

A325178 Difference between the length of the minimal square containing and the maximal square contained in the Young diagram of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 2, 0, 2, 4, 2, 5, 3, 1, 3, 6, 1, 7, 2, 2, 4, 8, 3, 1, 5, 1, 3, 9, 1, 10, 4, 3, 6, 2, 2, 11, 7, 4, 3, 12, 2, 13, 4, 1, 8, 14, 4, 2, 1, 5, 5, 15, 2, 3, 3, 6, 9, 16, 2, 17, 10, 2, 5, 4, 3, 18, 6, 7, 2, 19, 3, 20, 11, 1, 7, 3, 4, 21, 4, 2, 12
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition (3,3,2,1) has Heinz number 150 and diagram
  o o o
  o o o
  o o
  o
containing maximal square
  o o
  o o
and contained in minimal square
  o o o o
  o o o o
  o o o o
  o o o o
so a(150) = 4 - 2 = 2.
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.

Crossrefs

Positions of zeros are A062457. Positions of 1's are A325179. Positions of 2's are A325180.

Programs

  • Mathematica
    durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
    codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]];
    Table[codurf[n]-durf[n],{n,100}]

Formula

a(n) = A263297(n) - A257990(n).

A352831 Numbers whose weakly increasing prime indices y have exactly one fixed point y(i) = i.

Original entry on oeis.org

2, 4, 8, 9, 10, 12, 14, 16, 22, 24, 26, 27, 28, 32, 34, 36, 38, 40, 44, 46, 48, 52, 58, 60, 62, 63, 64, 68, 70, 72, 74, 75, 76, 80, 81, 82, 86, 88, 92, 94, 96, 98, 99, 104, 106, 108, 110, 112, 116, 117, 118, 120, 122, 124, 125, 128, 130, 132, 134, 135, 136
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      2: {1}             36: {1,1,2,2}         74: {1,12}
      4: {1,1}           38: {1,8}             75: {2,3,3}
      8: {1,1,1}         40: {1,1,1,3}         76: {1,1,8}
      9: {2,2}           44: {1,1,5}           80: {1,1,1,1,3}
     10: {1,3}           46: {1,9}             81: {2,2,2,2}
     12: {1,1,2}         48: {1,1,1,1,2}       82: {1,13}
     14: {1,4}           52: {1,1,6}           86: {1,14}
     16: {1,1,1,1}       58: {1,10}            88: {1,1,1,5}
     22: {1,5}           60: {1,1,2,3}         92: {1,1,9}
     24: {1,1,1,2}       62: {1,11}            94: {1,15}
     26: {1,6}           63: {2,2,4}           96: {1,1,1,1,1,2}
     27: {2,2,2}         64: {1,1,1,1,1,1}     98: {1,4,4}
     28: {1,1,4}         68: {1,1,7}           99: {2,2,5}
     32: {1,1,1,1,1}     70: {1,3,4}          104: {1,1,1,6}
     34: {1,7}           72: {1,1,1,2,2}      106: {1,16}
For example, 63 is in the sequence because its prime indices {2,2,4} have a unique fixed point at the second position.
		

Crossrefs

* = unproved
These are the positions of 1's in A352822.
*The reverse version for no fixed points is A352826, counted by A064428.
*The reverse version is A352827, counted by A001522 (strict A352829).
The version for no fixed points is A352830, counted by A238394.
These partitions are counted by A352832, compositions A240736.
Allowing more than one fixed point gives A352872, counted by A238395.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A115720 and A115994 count partitions by their Durfee square.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]==1&]

A182944 Square array A(i,j), i >= 1, j >= 1, of prime powers prime(i)^j, by descending antidiagonals.

Original entry on oeis.org

2, 4, 3, 8, 9, 5, 16, 27, 25, 7, 32, 81, 125, 49, 11, 64, 243, 625, 343, 121, 13, 128, 729, 3125, 2401, 1331, 169, 17, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23
Offset: 1

Views

Author

Clark Kimberling, Dec 14 2010

Keywords

Comments

We alternatively refer to this sequence as a triangle T(.,.), with T(n,k) = A(k,n-k+1) = prime(k)^(n-k+1).
The monotonic ordering of this sequence, prefixed by 1, is A000961.
The joint-rank array of this sequence is A182869.
Main diagonal gives A062457. - Omar E. Pol, Sep 11 2018

Examples

			Square array A(i,j) begins:
  i \ j: 1      2      3      4      5  ...
  ---\-------------------------------------
  1:     2,     4,     8,    16,    32, ...
  2:     3,     9,    27,    81,   243, ...
  3:     5,    25,   125,   625,  3125, ...
  4:     7,    49,   343,  2401, 16807, ...
  ...
The triangle T(n,k) begins:
  n\k:  1     2     3     4     5     6  ...
  1:    2
  2:    4     3
  3:    8     9     5
  4:   16    27    25     7
  5:   32    81   125    49    11
  6:   64   243   625   343   121    13
  ...
		

Crossrefs

Cf. A000961, A006939 (row products of triangle), A062457, A182945, A332979 (row maxima of triangle).
Columns: A000040 (1), A001248 (2), A030078 (3), A030514 (4), A050997 (5), A030516 (6), A092759 (7), A179645 (8), A179665 (9), A030629 (10).
A319075 extends the array with 0th powers.
Subtable of A242378, A284457, A329332.

Programs

  • Mathematica
    TableForm[Table[Prime[n]^j,{n,1,14},{j,1,8}]]

Formula

From Peter Munn, Dec 29 2019: (Start)
A(i,j) = A182945(j,i) = A319075(j,i).
A(i,j) = A242378(i-1,2^j) = A329332(2^(i-1),j).
A(i,i) = A062457(i).
(End)

Extensions

Clarified in respect of alternate reading as a triangle by Peter Munn, Aug 28 2022
Previous Showing 11-20 of 53 results. Next