cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 62 results. Next

A368105 The number of bi-unitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Comments

First differs from A095691 and A365552 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2 || OddQ[e], e, e -1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2 || x == 2, x, x-1), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = e if e = 2 or e is odd, and e-1 otherwise.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n equals the square of a squarefree number (A062503).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 1/p^3 - 1/p^4 + 1/p^5) = 1.87133814920590891161... .

A368978 The number of bi-unitary divisors of n that are squares (A000290).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Comments

First differs from A007424, A278908, A307848, A323308, A358260 and A365549 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e + 1)/2, 2*Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+1)/2, 2*((x+2)\4)), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = (e + 1)/2 if e is odd, and 2*floor((e+2)/4) if e is even.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n is in A062503.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4 + 1/p^5) = 1.58922450321701775833... .

A375073 Numbers whose prime factorization exponents include at least one 2, at least one 3 and no other exponents.

Original entry on oeis.org

72, 108, 200, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 1800, 2312, 2700, 2888, 3087, 3267, 3528, 4232, 4500, 4563, 5292, 5324, 5400, 6125, 6728, 7688, 7803, 8575, 8712, 8788, 9000, 9747, 9800, 10584, 10952, 11979, 12168, 12348, 13068, 13448, 13500, 14283, 14792
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2024

Keywords

Comments

Numbers k such that the set of distinct prime factorization exponents of k (row k of A136568) is {2, 3}.
Number k such that A051904(k) = 2 and A051903(k) = 3.

Crossrefs

Equals A338325 \ (A062503 UNION A062838).
Subsequence of A001694 and A046100.
A143610 is a subsequence.

Programs

  • Mathematica
    Select[Range[15000], Union[FactorInteger[#][[;; , 2]]] == {2, 3} &]
  • PARI
    is(k) = Set(factor(k)[,2]) == [2, 3];

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/p^2 + 1/p^3) - 15/Pi^2 - zeta(3)/zeta(6) + 1 = A330595 - A082020 - A157289 + 1 = 0.047550294197921818806... .

A382889 The largest square dividing the n-th cubefree number.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 25, 1, 4, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 49, 25, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 1, 1, 25, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 1, 49, 9, 100
Offset: 1

Views

Author

Amiram Eldar, Apr 07 2025

Keywords

Comments

Also, the powerful part of the n-th cubefree number.
All the terms are squares of squarefree numbers (A062503).

Crossrefs

Cf. A002117, A004709, A008833, A057521, A062503, A371188 (positions of 1's).
Similar sequences: A382888, A382890, A382891.

Programs

  • Mathematica
    f[p_, e_] := p^If[e == 1, 0, 2]; s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;; , 2]], # < 3 &], Times @@ f @@@ fct, Nothing]]; Array[s, 100]
  • PARI
    list(lim) = {my(f); print1(1, ", "); for(k = 2, lim, f = factor(k); if(vecmax(f[, 2]) < 3, print1(prod(i = 1, #f~, f[i, 1]^if(f[i, 2] == 1, 0, 2)), ", ")));}

Formula

a(n) = A008833(A004709(n)).
a(n) = A057521(A004709(n)).
a(n) = A382890(n)^2.
a(n) = A004709(n)/A382891(n).
a(n) = (A004709(n)/A382888(n))^2.
a(A371188(n)) = 1.
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(3)^(3/2) * Product_{p prime} (1 + 1/p^(3/2) - 1/p^2 - 1/p^(5/2)) = 1.48513488319516447978... .

A182120 Numbers for which the canonical prime factorization contains only exponents which are congruent to 2 modulo 3.

Original entry on oeis.org

1, 4, 9, 25, 32, 36, 49, 100, 121, 169, 196, 225, 243, 256, 288, 289, 361, 441, 484, 529, 676, 800, 841, 900, 961, 972, 1089, 1156, 1225, 1369, 1444, 1521, 1568, 1681, 1764, 1849, 2048, 2116, 2209, 2304, 2601, 2809, 3025, 3125, 3249, 3364, 3481, 3721, 3844
Offset: 1

Views

Author

Douglas Latimer, Apr 12 2012

Keywords

Comments

By convention 1 is included as the first term.

Examples

			100 is included, as its canonical prime factorization (2^2)*(5^2) contains only exponents which are congruent to 2 modulo 3.
		

Crossrefs

A062503 is a subsequence.
Subsequence of A001694.

Programs

  • Mathematica
    Join[{1},Select[Range[5000],Union[Mod[Transpose[FactorInteger[#]][[2]],3]] == {2}&]] (* Harvey P. Dale, Aug 18 2014 *)
  • PARI
    {plnt=1; k=1; print1(k, ", "); plnt++;
    mxind=76 ; mxind++ ; for(k=2, 2*10^6,
    M=factor(k);passes=1;
    sz = matsize(M)[1];
    for(k=1,sz,  if( M[k,2] % 3 != 2, passes=0));
    if( passes == 1 ,
    print1(k, ", "); plnt++) ; if(mxind ==  plnt, break() ))}
    
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2]%3 != 2, return(0))); 1;} \\ Amiram Eldar, Oct 21 2023

Formula

Sum_{n>=1} 1/a(n) = zeta(3) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 1.56984817927051410948... . - Amiram Eldar, Oct 21 2023

A329376 Multiplicative with a(p^e) = p when e = 2, otherwise a(p^e) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2019

Keywords

Comments

Product of those distinct prime factors that occur exactly twice in the prime factorization of n, that is, whose exponent is 2.

Crossrefs

Row 3 of array A106177, and the square roots of its row 9.

Programs

  • Mathematica
    f[p_, e_] := If[e == 2, p, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 11 2023 *)
  • PARI
    A329376(n) = { my(f = factor(n)); prod(i=1,#f~,f[i, 1]^(2 == f[i, 2])); };
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X^2 + X + X^2/(-1 + 1/X)))[n], ", ")) \\ Vaclav Kotesovec, May 31 2024

Formula

Multiplicative with a(p^e) = p when e = 2, otherwise a(p^e) = 1.
a(n) <= A000196(n).
From Amiram Eldar, Feb 11 2023: (Start)
a(n) <= sqrt(n), with equality if and only if n is in A062503.
a(n) = 1 if and only if n is in A337050. (End)
From Vaclav Kotesovec, May 31 2024: (Start)
Dirichlet g.f.: zeta(2*s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(5*s-1) + 1/p^(5*s-2) + 1/p^(4*s-1) - 1/p^(4*s-2) - 1/p^(3*s-1) + 1/p^(3*s) - 1/p^(2*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(5*s-1) + 1/p^(5*s-2) + 1/p^(4*s-1) - 1/p^(4*s-2) - 1/p^(3*s-1) + 1/p^(3*s) - 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = Product_{p prime} (1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.33718787379158997196169281615215824494915412775816393888028828465611936...,
f'(1) = f(1) * Sum_{p prime} (9*p^2 - 12*p + 5) * log(p) / (p^4 - 3*p^2 + 3*p - 1) = f(1) * 3.78385641685861932254178374972226733621783278751462026270346293...
and gamma is the Euler-Mascheroni constant A001620. (End)

A368977 The number of bi-unitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 4, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 6, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 3, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 6, 3, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e+3)/2, 2*Floor[e/4]+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+3)/2, 2*(x\4)+1), factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2 + 2*X^3 - X^4)/(1 - X - X^4 + X^5))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = (e+3)/2 if e is odd, and 2*floor(e/4)+1 if e is even.
a(n) >= 1, with equality if and only if n is in A062503.
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Let f(s) = Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (1 - p + 2*p^2) / (p*(1 + p)*(1 + p^2))) = 0.5715031234451924252215041182933420817059774181158824297150124265420835...,
f'(1) = f(1) * Sum_{p prime} (4*p^5 - p^4 + 2*p^3 + 2*p + 1) * log(p) / (p^7 + 2*p^6 + p^5 + 3*p^4 + p^3 + p - 1) = f(1) * 1.1422556395248477875508983912036578244050011522937179465478688905880430...
and gamma is the Euler-Mascheroni constant A001620. (End)

A081084 Nonsquarefree numbers m such that rad(m+1)=rad(m)+1, where rad(m)=A007947(m) is the squarefree kernel of m.

Original entry on oeis.org

8, 48, 224, 960, 65024, 261120, 1046528, 4190208, 268402688, 1073676288, 4294836224, 17179607040, 70368727400448, 4503599493152768, 18014398241046528, 72057593501057024, 288230375077969920
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 04 2003

Keywords

Comments

For k >= 3, 2^k*(2^(k-2)-1) is in the sequence if and only if 2^(k-1)-1 and 2^(k-2)-1 are squarefree. So if m is a term, m+1=2^(k-1)-1 is a squarefree number squared. - Lambert Herrgesell (zero815(AT)googlemail.com), Feb 18 2007

Examples

			48 = 2^4*3 is in the sequence because it is not squarefree, its squarefree kernel is 6 and the squarefree kernel of 49 = 7^2 is 7.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 48, p. 18, Ellipses, Paris 2008.

Crossrefs

Programs

  • Maple
    with(numtheory): rad:=proc(n) local fs, c: fs:=convert(factorset(n),list): c:=nops(fs): product(fs[j],j=1..c) end: b:=proc(n) if mobius(n)=0 and rad(n+1)=rad(n)+1 then n else fi end:seq(b(n),n=1..1000); # Emeric Deutsch
  • PARI
    rad(n)=my(f=factor(n)[,1]);prod(i=1,#f,f[i])
    is(n)=!issquarefree(n) && rad(n+1)==rad(n)+1 \\ Charles R Greathouse IV, Aug 08 2013

Extensions

a(5)-a(8) from Emeric Deutsch, Mar 29 2005
Edited and a(9) onwards supplied by Lambert Herrgesell (zero815(AT)googlemail.com), Feb 18 2007

A321070 Squares divisible by more than one cube > 1.

Original entry on oeis.org

64, 256, 576, 729, 1024, 1296, 1600, 2304, 2916, 3136, 4096, 5184, 6400, 6561, 7744, 9216, 10000, 10816, 11664, 12544, 14400, 15625, 16384, 18225, 18496, 20736, 23104, 25600, 26244, 28224, 30976, 32400, 33856, 35721, 36864, 38416, 40000, 43264, 46656, 50176
Offset: 1

Views

Author

Hugo Pfoertner, Oct 27 2018

Keywords

Examples

			a(1) = 64 because 16^2 is divisible by 2^3 and by 4^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[225]^2, Max[(e = FactorInteger[#][[;; , 2]])] > 4 || (Length[e] > 1 && Sort[e, Greater][[2]] > 2) &] (* Amiram Eldar, Jun 25 2022 *)
  • PARI
    iscubes(n) = {my(nb = 0); fordiv(n, d, if ((d>1) && ispower(d, 3), nb++; if (nb > 1, return(1))););}
    isok(n) = issquare(n) && iscubes(n); \\ Michel Marcus, Oct 27 2018

Formula

From Amiram Eldar, Jun 25 2022: (Start)
Equals A000290 \ (union of A062503 and A320965).
Sum_{n>=1} 1/a(n) = Pi^2/6 - (15/Pi^2) * (1 + Sum_{k>=2} (-1)^k * P(2*k)) = 0.029082273527998239268... . (End)

A327274 Dirichlet g.f.: 1 / (zeta(s)^2 * (1 - 2^(1 - s))).

Original entry on oeis.org

1, 0, -2, 1, -2, 0, -2, 2, 1, 0, -2, -2, -2, 0, 4, 4, -2, 0, -2, -2, 4, 0, -2, -4, 1, 0, 0, -2, -2, 0, -2, 8, 4, 0, 4, 1, -2, 0, 4, -4, -2, 0, -2, -2, -2, 0, -2, -8, 1, 0, 4, -2, -2, 0, 4, -4, 4, 0, -2, 4, -2, 0, -2, 16, 4, 0, -2, -2, 4, 0, -2, 2, -2, 0, -2, -2, 4, 0, -2, -8
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 22 2019

Keywords

Comments

Dirichlet inverse of A048272.
Moebius transform of A067856.

Crossrefs

Cf. A007427, A008683, A048272, A062503 (positions of 1's), A067856, A327268.

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[Sum[(-1)^j, {j, Divisors[n/d]}] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 80}]
    f[p_, e_] := Switch[e, 1, -2, 2, 1, , 0]; f[2, e] := 2^(e-2); f[2, 1] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
  • PARI
    A067856(n) = { my(k); if(n<1, 0, k=valuation(n, 2); moebius(n/2^k)*2^max(0, k-1)); }; \\ From A067856
    A327274(n) = sumdiv(n,d,moebius(n/d)*A067856(d));

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA048272(n/d) * a(d).
a(n) = Sum_{d|n} mu(n/d) * A067856(d).
a(n) = 0 if n == 2 (mod 4). - Bernard Schott, Dec 07 2021
Multiplicative with a(2) = 0, a(2^e) = 2^(e-2) for e >= 2, and for an odd prime p, a(p) = -2, a(p^2) = 1, and a(p^e) = 0 for e >= 3. - Amiram Eldar, Sep 15 2023
Previous Showing 41-50 of 62 results. Next