cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A254464 a(n) = 21*2^n + 10*4^n + 15*3^n + 3*6^n + 6*5^n + 7^n + 28.

Original entry on oeis.org

84, 210, 714, 2982, 14178, 73470, 404634, 2331462, 13906578, 85232910, 533860554, 3403329942, 22012307778, 144090486750, 952693102074, 6352175272422, 42655384385778, 288161867586990, 1956674663089194, 13344181547374902, 91343993647708578, 627261876368085630
Offset: 0

Views

Author

Luciano Ancora, Jan 31 2015

Keywords

Comments

This is the sequence of seventh terms of "third partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[21 2^n + 10 4^n + 15 3^n + 3 6^n + 6 5^n + 7^n + 28, {n, 0, 24}] (* Michael De Vlieger, Jan 31 2015 *)
    LinearRecurrence[{28,-322,1960,-6769,13132,-13068,5040},{84,210,714,2982,14178,73470,404634},30] (* Harvey P. Dale, May 17 2019 *)
  • PARI
    vector(30, n, n--; 21*2^n + 10*4^n + 15*3^n + 3*6^n + 6*5^n + 7^n + 28) \\ Colin Barker, Jan 31 2015

Formula

From Colin Barker, Jan 31 2015: (Start)
G.f.: -6*(40188*x^6 - 74058*x^5 + 52931*x^4 - 19005*x^3 + 3647*x^2 - 357*x + 14)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)).
a(n) = 28*a(n-1) - 322*a(n-2) + 1960*a(n-3) - 6769*a(n-4) + 13132*a(n-5) - 13068*a(n-6) + 5040*a(n-7). (End)
E.g.f.: exp(x)*(exp(x)*(exp(5*x) + 3*exp(4*x) + 6*exp(3*x) + 10*exp(2*x) + 15*exp(x) + 21) + 28). - Elmo R. Oliveira, Sep 16 2024

A369414 Irregular triangle read by rows: row n lists the values of the vertices at the n-th level of the MI graph (see comments).

Original entry on oeis.org

1, 2, 4, 8, 5, 16, 13, 10, 7, 32, 29, 26, 23, 20, 17, 14, 11, 64, 61, 58, 55, 52, 49, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19, 128, 125, 122, 119, 116, 113, 110, 107, 104, 101, 98, 95, 92, 89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35
Offset: 0

Views

Author

Paolo Xausa, Jan 24 2024

Keywords

Comments

The vertices of the graph consist of all of the positive integers that are not divisible by 3. A vertex v (for v >= 4) has 2*v as left child and 2*v - 3 as right child (see example).
Matos and Antunes (1998) use this graph to illustrate the fact that, for a string (theorem) S belonging to the MIU formal system containing no U characters, the length of the path from vertex v (where v is the number of I characters in S) to the root corresponds to the number of times step 2 of their algorithm for generating "normal" proofs (described in A369409) is applied.
See A368946 for the description of the MIU formal system.

Examples

			The first levels of the graph are shown below. Cf. Matos and Antunes (1998), p. 7, figure 1.
                           +--1
                           |
                        +--2
                        |
            +-----------4-----------+
            |                       |
      +-----8-----+           +-----5-----+
      |           |           |           |
   +-16--+     +-13--+     +-10--+     +--7--+
   |     |     |     |     |     |     |     |
  32    29    26    23    20    17    14    11
                       ...
Written as an irregular triangle, the sequence begins:
  [0]  1;
  [1]  2;
  [2]  4;
  [3]  8  5;
  [4] 16 13 10  7;
  [5] 32 29 26 23 20 17 14 11;
  ...
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41.

Crossrefs

Cf. A000079 (first column and, for n >= 2, row lengths), A062709 (right border, for n >= 2).
Permutation of A001651.

Programs

  • Mathematica
    A369414row[n_] := If[n <= 1, {n+1}, Range[2^n, 3+2^(n-2), -3]];
    Array[A369414row, 8, 0]

Formula

T(n,1) = n + 1 for n < 2.
T(n,k) = 2^n - 3*(k-1) for n >= 2 and 1 <= k <= 2^(n-2).

A067390 Number of distinct prime factors in 2^n + 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 3, 2, 1, 1, 3, 1, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 4, 1, 3, 2, 4, 3, 2, 3, 3, 2, 2, 2, 3, 2, 4, 4, 2, 2, 3, 2, 3, 3, 4, 2, 5, 2, 1, 3, 3, 3, 4, 3, 2, 2, 4, 2, 5, 2, 1, 5, 3, 3, 3, 3, 3, 4, 4, 2, 4, 3, 4, 5, 4, 4, 5, 1, 4, 4, 2, 3, 5, 4, 4, 4, 4, 5, 4, 4, 6, 3, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, Feb 23 2002

Keywords

Examples

			a(5) = 2 since 2^5 + 3 = 35 = 5 * 7 has 2 distinct prime factors.
		

Crossrefs

Programs

  • Magma
    [#PrimeDivisors(2^n+3):n in [1..100]]; // Marius A. Burtea, Feb 06 2020
  • Mathematica
    PrimeNu @ Table[2^n + 3, {n, 1, 50}] (* Amiram Eldar, Feb 06 2020 *)

Formula

a(n) = A001221(A062709(n)). - Amiram Eldar, Feb 06 2020

A228132 First differences of A014311.

Original entry on oeis.org

4, 2, 1, 5, 2, 1, 3, 1, 2, 7, 2, 1, 3, 1, 2, 5, 1, 2, 4, 11, 2, 1, 3, 1, 2, 5, 1, 2, 4, 9, 1, 2, 4, 8, 19, 2, 1, 3, 1, 2, 5, 1, 2, 4, 9, 1, 2, 4, 8, 17, 1, 2, 4, 8, 16, 35, 2, 1, 3, 1, 2, 5, 1, 2, 4, 9, 1, 2, 4, 8, 17, 1, 2, 4, 8, 16, 33, 1, 2, 4, 8, 16, 32
Offset: 1

Views

Author

Jon Perry, Nov 02 2013

Keywords

Comments

The records are: 4, 5, 7, 11, 19, 35, 67, ... and they occur at these indices of A014311: 11, 19, 35, 67, ... (for both, see A062709). - Michel Marcus, Jun 11 2015
The record (maximum) among the first 1000 terms is 65539. - Harvey P. Dale, May 29 2018

Crossrefs

Cf. A062709 (2^n+3), A014311 (numbers with exactly 3 ones in binary expansion).
Cf. A145057.

Programs

  • JavaScript
    oo=0;
    for (i=1;i<500;i++) {
    s=i.toString(2);
    o=0;
    for (j=0;j
    				
  • Mathematica
    Differences[Select[Range[500],DigitCount[#,2,1]==3&]] (* Harvey P. Dale, May 29 2018 *)
  • PARI
    lista(nn) = {my(last = 0); for (n=1, nn, if (hammingweight(n)==3, if (last, print1(n-last,", ")); last = n;););} \\ Michel Marcus, Jun 10 2015
    
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A228132(n): return (1<<(r:=n-comb((m:=integer_nthroot(6*n+6,3)[0])+(t:=(n>=comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+(1<<(a:=isqrt(s:=n+1-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+(1<comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))-(1<<(a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))-(1<Chai Wah Wu, Apr 07 2025

A377610 a(n) is the number of iterations of x -> 2*x - 3 until (# composites reached) = (# primes reached), starting with prime(n+2).

Original entry on oeis.org

13, 9, 7, 21, 7, 1, 15, 1, 5, 23, 5, 13, 1, 3, 1, 1, 3, 19, 1, 1, 11, 1, 7, 9, 1, 19, 1, 17, 7, 1, 3, 1, 1, 1, 11, 1, 5, 1, 1, 11, 3, 5, 1, 1, 15, 15, 1, 1, 3, 1, 5, 5, 1, 5, 1, 1, 1, 1, 13, 1, 1, 9, 1, 5, 3, 1, 3, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 9, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 05 2024

Keywords

Comments

For a guide to related sequences, see A377609.

Examples

			Starting with prime(3) = 5, we have 2*5-3 = 7, then 2*7-3 = 11, etc., resulting in a chain 5, 7, 11, 19, 35, 67, 131, 259, 515, 1027, 2051, 4099, 8195, 16387 having 7 primes and 7 composites. Since every initial subchain has fewer composites than primes, a(1) = 14-1 = 13. (For more terms from the mapping x -> 2x-3, see A062709.)
		

Crossrefs

Programs

  • Mathematica
    chain[{start_, u_, v_}] := If[CoprimeQ[u, v] && start*u + v != start,
       NestWhile[Append[#, u*Last[#] + v] &, {start}, !
          Count[#, ?PrimeQ] == Count[#, ?(! PrimeQ[#] &)] &], {}];
    chain[{Prime[3], 2, -3}]
    Map[Length[chain[{Prime[#], 2, -3}]] &, Range[3, 100]] - 1
    (* Peter J. C. Moses, Oct 31 2024 *)

A091264 Matrix defined by a(n,k) = 2^n + (k-1), read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 3, 2, 2, 7, 4, 3, 3, 15, 8, 5, 4, 4, 31, 16, 9, 6, 5, 5, 63, 32, 17, 10, 7, 6, 6, 127, 64, 33, 18, 11, 8, 7, 7, 255, 128, 65, 34, 19, 12, 9, 8, 8, 511, 256, 129, 66, 35, 20, 13, 10, 9, 9, 1023, 512, 257, 130, 67, 36, 21, 14, 11, 10, 10, 2047, 1024, 513, 258, 131, 68, 37, 22
Offset: 0

Views

Author

Ross La Haye, Feb 23 2004

Keywords

Examples

			{0};
{1,1};
{3,2,2};
{7,4,3,3};
{15,8,5,4,4};
{31,16,9,6,5,5};
{63,32,17,10,7,6,6};
a(5,3) = 34 because 2^5 + (3-1) = 34.
		

Crossrefs

Rows: a(0, k) = A001477(k), a(1, k) = A000027(k+1) etc. etc. Columns: a(n, 0) = A000225(n). a(n, 1) = A000079(n). a(n, 2) = A000051(n). a(n, 3) = A052548(n). a(n, 4) = A062709(n). Diagonals: a(n, n+3) = A052968(n+1). a(n, n+2) = A005126(n). a(n, n+1) = A006127(n). a(n, n) = A052944(n). a(n, n-1) = A083706(n-1). Also note that the sums of the antidiagonals = the partial sums of the main diagonal, i.e., a(n, n).

Programs

  • Mathematica
    Flatten[ Table[ Table[ a[i, n - i], {i, n, 0, -1}], {n, 0, 11}]] (* both from Robert G. Wilson v, Feb 26 2004 *)
    Table[a[n, k], {n, 0, 10}, {k, 0, 10}] // TableForm (* to view the table *)

Formula

For k > 0, a(n, k)= a(n, k-1) + 1.
a(n, k) = 2^n + (k-1).

Extensions

More terms from Robert G. Wilson v, Feb 23 2004

A267615 a(n) = 2^n + 11.

Original entry on oeis.org

12, 13, 15, 19, 27, 43, 75, 139, 267, 523, 1035, 2059, 4107, 8203, 16395, 32779, 65547, 131083, 262155, 524299, 1048587, 2097163, 4194315, 8388619, 16777227, 33554443, 67108875, 134217739, 268435467, 536870923, 1073741835, 2147483659, 4294967307, 8589934603, 17179869195, 34359738379
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 18 2016

Keywords

Comments

Recurrence relation b(n) = 3*b(n - 1) - 2*b(n - 2) for n>1, b(0) = k, b(1) = k + 1, gives the closed form b(n) = 2^n + k - 1.

Crossrefs

Cf. sequences with closed form 2^n + k - 1: A168616 (k=-4), A028399 (k=-3), A036563 (k=-2), A000918 (k=-1), A000225 (k=0), A000079 (k=1), A000051 (k=2), A052548 (k=3), A062709 (k=4), A140504 (k=5), A168614 (k=6), A153972 (k=7), A168415 (k=8), A242475 (k=9), A188165 (k=10), A246139 (k=11), this sequence (k=12).
Cf. A156940.

Programs

  • Magma
    [2^n+11: n in [0..30]]; // Vincenzo Librandi, Jan 19 2016
  • Mathematica
    Table[2^n + 11, {n, 0, 35}]
    LinearRecurrence[{3, -2}, {12, 13}, 40] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    a(n) = 2^n + 11; \\ Altug Alkan, Jan 18 2016
    

Formula

G.f.: (12 - 23*x)/(1 - 3*x + 2*x^2).
a(n) = 3*a(n - 1) - 2*a(n - 2) for n>1, a(0)=12, a(1)=13.
a(n) = A000079(n) + A010850(n).
Sum_{n>=0} 1/a(n) = 0.367971714327125...
Lim_{n->oo} a(n + 1)/a(n) = 2.
E.g.f.: exp(2*x) + 11*exp(x). - Elmo R. Oliveira, Nov 08 2023

A347512 Number of minimal dominating sets in the n-book graph.

Original entry on oeis.org

6, 7, 11, 19, 35, 67, 131, 259, 515, 1027, 2051, 4099, 8195, 16387, 32771, 65539, 131075, 262147, 524291, 1048579, 2097155, 4194307, 8388611, 16777219, 33554435, 67108867, 134217731, 268435459, 536870915, 1073741827, 2147483651, 4294967299, 8589934595
Offset: 1

Views

Author

Eric W. Weisstein, Sep 04 2021

Keywords

Crossrefs

Cf. A062709 (essentially the same).

Programs

  • Mathematica
    Join[{6}, 2^Range[2, 20] + 3]
    CoefficientList[Series[(6 - 11 x + 2 x^2)/((-1 + x) (-1 + 2 x)), {x, 0, 20}], x]

Formula

a(n) = A062709(n) = 2^n + 3 for n > 1.
G.f.: x*(6 - 11*x + 2*x^2)/((-1 + x)*(-1 + 2*x)).
E.g.f.: exp(x)*(3 + exp(x)) - 4 + x. - Stefano Spezia, Sep 04 2021

A376322 (1/4) times obverse convolution (2)**(2^n + 1); see Comments.

Original entry on oeis.org

1, 5, 35, 385, 7315, 256025, 17153675, 2247131425, 582007039075, 299733625123625, 307826433001962875, 631352014087025856625, 2587911905742718986305875, 21207938067561582092776645625, 347534481113131645754330891856875, 11389052480558437163015177657041650625
Offset: 0

Views

Author

Clark Kimberling, Sep 20 2024

Keywords

Comments

See A374848 for the definition of obverse convolution and a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := 2; t[n_] := 2^n + 1;
    u[n_] := (1/4) Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
    (* or *)
    Table[2^(n*(n+1)/2 - 2) * QPochhammer[-3, 1/2, n+1], {n, 0, 15}] (* Vaclav Kotesovec, Sep 20 2024 *)

Formula

a(n) = a(n-1)*A062709(n) for n>=1.
a(n) = (1/4)((3)**(2^n)) = (1/4)(A010701(n)**A000079(n)) for n>=0.
Previous Showing 21-29 of 29 results.