cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A163374 a(n) = tau(tau(phi(n))).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 4, 3, 3, 3, 2, 3, 4, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 3, 4, 2, 4, 2, 4, 4, 3, 4, 4, 2, 4, 4, 4, 4, 4, 3, 3, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 2, 6, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 3, 4, 3, 6, 4, 4, 4, 4, 4, 3, 4, 2, 4
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Examples

			tau(tau(phi(7))) = tau(tau(6)) = tau(4) = 3. Thus a(7) = 3. - _Derek Orr_, Jul 27 2014
		

Crossrefs

Cf. A000005 (tau), A000010 (phi), A010553, A062821.

Programs

  • Magma
    [NumberOfDivisors(NumberOfDivisors(EulerPhi(n))): n in [1..100]]; // Vincenzo Librandi, Jul 27 2014
    
  • Mathematica
    DivisorSigma[0,DivisorSigma[0,EulerPhi[Range[90]]]] (* Harvey P. Dale, Mar 25 2016 *)
  • PARI
    a(n)=sigma(sigma(eulerphi(n),0),0); \\ Derek Orr, Jul 27 2014

Formula

Extensions

More terms from Vincenzo Librandi, Jul 27 2014

A163376 a(n) = phi(tau(phi(n))).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 4, 4, 2, 6, 2, 4, 4, 4, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 6, 2, 2, 4, 4, 4, 6, 2, 4, 2, 4, 2, 2, 4, 4, 4, 4, 6, 4, 6, 4, 4, 4, 2, 4, 4, 2, 4, 6, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A163376:=n->phi(tau(phi(n))): seq(A163376(n), n=1..200); # Wesley Ivan Hurt, May 03 2017
  • Mathematica
    EulerPhi[DivisorSigma[0, EulerPhi[Range[100]]]] (* G. C. Greubel, Dec 20 2016 *)
  • PARI
    vector(100, n, eulerphi(numdiv(eulerphi(n)))) \\ G. C. Greubel, Dec 20 2016

Formula

A173334 Numbers k such that tau(phi(k)) = phi(sum-of-prime-divisors(k)).

Original entry on oeis.org

2, 3, 15, 18, 24, 28, 30, 33, 39, 50, 52, 55, 80, 132, 133, 152, 169, 186, 187, 190, 195, 207, 215, 217, 222, 230, 238, 247, 261, 266, 305, 319, 333, 340, 352, 369, 371, 414, 481, 484, 494, 496, 497, 506, 516, 522, 559, 574, 580, 611, 644, 646, 660, 671, 689
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

Numbers k such that A000005(A000010(k)) = A000010(A008472(k)).

Examples

			For n=15, tau(phi(15)) = tau(8)=4 equals phi(A008472(15))=phi(8) = 4, which adds 15 to the sequence.
For n=18, tau(phi(18)) = tau(6) =4 equals phi(A008472(18)) = phi(5) = 4, which adds 18 to the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    [m:m in [2..700]|#Divisors(EulerPhi(m)) eq EulerPhi(&+PrimeDivisors(m))]; // Marius A. Burtea, Jul 10 2019
    
  • Maple
    with(numtheory): for n from 1 to 1800 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if tau(phi(n)) = phi(t2) then print (n): else fi : od :
  • Mathematica
    Select[Range[2, 700], DivisorSigma[0, EulerPhi[#]] == EulerPhi[Total[FactorInteger[#][[All, 1]]]] &]
    (* Jean-François Alcover, May 19 2011 *)
  • PARI
    isok(n) = numdiv(eulerphi(n)) == eulerphi(vecsum(factor(n)[, 1])); \\ Michel Marcus, Jul 10 2019

Formula

{n : A062821(n)= phi(A008472(n))}.

Extensions

Removed sopf acronym. Updated references and links - R. J. Mathar, Mar 10 2010

A173336 Numbers k such that tau(phi(k)) = sigma(sopf(k)).

Original entry on oeis.org

8, 9, 25, 36, 49, 54, 96, 100, 320, 441, 495, 704, 891, 1029, 1080, 1089, 1260, 1331, 1386, 1400, 1617, 1701, 1750, 1815, 1848, 1950, 1960, 2079, 2541, 2574, 2704, 2850, 2880, 3000, 3360, 3430, 3510, 3861, 4125, 4275, 4680, 4704, 4719, 4800, 5070, 5096
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

tau(k) is the number of divisors of k (A000005); phi(k) is the Euler totient function (A000010); sigma(k) is the sum of divisors of k (A000203); and sopf(k) is the sum of the distinct primes dividing k without repetition (A008472).

Examples

			8 is in the sequence because phi(8) = 4, tau(4)=3, sopf(8)=2 and sigma(2) = 3 ;
9 is in the sequence because phi(9) = 6, tau(6)=4, sopf(9)=3 and sigma(3) = 4.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    [m:m in [2..5100]|#Divisors(EulerPhi(m)) eq &+Divisors(&+PrimeDivisors(m))]; // Marius A. Burtea, Jul 10 2019
    
  • Maple
    with(numtheory): for n from 1 to 18000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)):if tau(phi(n)) = sigma(t2) then print (n): else fi : od :
  • Mathematica
    sopf[n_] := Plus @@ (First@# & /@ FactorInteger[n]); Select[Range[2, 5100], DivisorSigma[0,EulerPhi[#]] == DivisorSigma[1, sopf[#]] &] (* Amiram Eldar, Jul 09 2019 *)
  • PARI
    isok(n) = (n>1) && numdiv(eulerphi(n)) == sigma(vecsum(factor(n)[, 1])); \\ Michel Marcus, Jul 10 2019

Formula

k such that A062821(k) = sigma(A008472(k)).

Extensions

Corrected and edited by Michel Lagneau, Apr 25 2010
Edited by D. S. McNeil, Nov 20 2010

A173618 Numbers k such that tau(phi(k)) = rad(k).

Original entry on oeis.org

1, 4, 36, 54, 96, 200, 448, 1280, 2700, 4500, 5103, 9720, 11264, 14112, 14580, 17280, 26624, 32928, 48000, 54432, 71442, 75000, 81648, 152064, 184320, 187500, 258048, 307200, 350000, 637875, 1250235, 1344560, 1557504, 2044416, 2187500, 2367488, 3234816
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

rad(k) is the product of the primes dividing k (A007947), tau(k) is the number of divisors of k (A000005), phi(k) is the Euler totient function (A000010).

Examples

			phi(4) = 2, tau(2) = 2 and rad(4) = 2 phi(36) = 12, tau(12) = 6 and rad(36) = 6
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 1000000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if tau(phi(n))= t2 then print (n): else fi: od :
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); Select[Range[10^5], DivisorSigma[0, EulerPhi[#]] == rad[#] &] (* Amiram Eldar, Jul 09 2019*)
  • PARI
    isok(k) = numdiv(eulerphi(k)) == factorback(factorint(k)[, 1]); \\ Michel Marcus, Jul 09 2019

Formula

k such that A062821(k) = A007947(k).

Extensions

a(30)-a(37) from Donovan Johnson, Jul 27 2011

A173745 Numbers n such that tau(phi(n)) = sigma(rad(n)).

Original entry on oeis.org

1, 8, 9, 25, 49, 216, 288, 324, 675, 1125, 1331, 1458, 1568, 2000, 2744, 3200, 3645, 6125, 6144, 8575, 9604, 9801, 14336, 30976, 31250, 42592, 46875, 70304, 72171, 81000, 108000, 109375, 123201, 129600, 131769, 135000, 145800, 182250, 184832
Offset: 1

Views

Author

Michel Lagneau, Feb 23 2010

Keywords

Comments

tau(phi(n)) = A000005(A000010(n)) = A062821(n).
sigma(rad(n)) = A000203(A007947(n)) = A048250(n).

Examples

			For n=9, tau(phi(9)) = tau(6)=4 equals sigma(rad(9)) = sigma(3) = 4 which adds n=9 to the sequence.
		

Programs

  • Magma
    [1] cat [m:m in [2..200000]|#Divisors(EulerPhi(m)) eq &+Divisors(&*PrimeDivisors(m))]; // Marius A. Burtea, Jul 10 2019
    
  • Maple
    with(numtheory):for n from 1 to 1500000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if tau(phi(n)) = sigma(t2) then print (n): else fi: od :
  • Mathematica
    Select[Range[200000], DivisorSigma[0,EulerPhi[#]] == DivisorSigma[1, Times @@ FactorInteger[#][[All,1]]] & ] (* Jean-François Alcover, Sep 12 2011 *)
  • PARI
    isok(n) = numdiv(eulerphi(n)) == sigma(factorback(factorint(n)[, 1])); \\ Michel Marcus, Jul 10 2019

Formula

{ n : A062821(n) = A048250(n) }.

Extensions

Unspecific references removed by R. J. Mathar, Mar 26 2010

A176839 The number of iterations to reach 1 under the map x -> x-tau(phi(x)), starting at n.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 5, 5, 5, 4, 6, 5, 6, 5, 7, 5, 7, 6, 7, 6, 8, 6, 7, 7, 7, 7, 9, 8, 8, 7, 8, 8, 10, 8, 9, 9, 11, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 10, 11, 11, 12, 11, 12, 12, 12, 12, 12, 12, 13, 11, 12, 13, 13, 12, 13, 13, 13, 12, 13, 14, 14, 14
Offset: 1

Views

Author

Michel Lagneau, Apr 27 2010

Keywords

Comments

Tau(n) = A000005(n) is the number of divisors of n, and phi(n) = A000010(n) is the Euler totient function.

Examples

			a(12)=4 because
f(12) = 12 - tau(phi(12)) = 12 - tau(4) = 12 - 3 = 9;
f(9) = 9 - tau(phi(9)) = 9 - tau(6) = 9 - 4 = 5;
f(5) = 5 - tau(phi(5)) = 5 - tau(4) = 5 - 3 = 2;
f(2) = 2 - tau(phi(2)) = 2 - tau(1) = 2 - 1 = 1, and a(12) = 4.
		

Crossrefs

Cf. A062821.

Programs

  • Maple
    A062821 := proc(n)
            numtheory[tau](numtheory[phi](n)) ;
    end proc:
    A176839 := proc(n)
            a := 0 ;
            x := n ;
            while x <> 1 do
                    x := x-A062821(x) ;
                    a := a+1 ;
            end do:
            a ;
    end proc: # R. J. Mathar, Oct 11 2011
  • Mathematica
    f[n_] := If[n == 1, 1, n - DivisorSigma[0, EulerPhi[n]]];
    a[n_] := Length[FixedPointList[f, n]] - 2;
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Apr 09 2024 *)

A216325 Number of divisors of the degree of the minimal polynomial for 2*cos(Pi/n), n >= 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 4, 4, 6, 3, 6, 4, 4, 4, 5, 4, 5, 6, 6, 6, 6, 6, 5, 6, 6, 4, 6, 6, 4, 2, 5, 4, 6, 5, 8, 4, 6, 6, 8, 6, 6, 2, 5, 8, 8, 6, 6, 8, 6, 4, 6, 4, 8, 4, 8, 9, 9, 6, 9, 8, 8, 4, 6, 4, 8, 2, 8, 6, 8, 6, 8, 6, 8, 9, 6, 8, 4, 9, 6, 10, 8
Offset: 1

Views

Author

Wolfdieter Lang, Sep 27 2012

Keywords

Comments

For the minimal polynomials C(n,x) of the algebraic number rho = 2*cos(Pi/n), n >= 1, see their coefficient table A187360. Their degree is delta(n)= phi(2*n)/2, if n >= 2, and delta(1) = 1, with Euler's totient A000010. The delta sequence is given in A055034. a(n) is the number of divisors of delta(n).
a(n) is also the number of distinct Modd n orders given in the table A216320 in row n. (For Modd n see a comment on A203571).
See the analog A062821(n), with the number of divisors of phi(n). The corresponding order table is A216327.

Examples

			a(8) = 3 because C(8,x) = x^4 - 4*x^2 + 2, with degree delta(8) = A055034(8) = 4, and the three divisors of 4 are 1, 2 and 4. tau(4) = A000005(4) = 3.
		

Crossrefs

Cf. A062821 (analog).

Formula

a(n) = tau(delta(n)), n >= 1, with tau = A000005 (number of divisors), delta defined in a comment above and given as delta(n) = A055034(n).

A280338 Number of sizes of remainder sets for n, for any natural number c, given natural number b in (b^c) mod n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 3, 6, 4, 3, 3, 5, 4, 6, 5, 4, 4, 4, 4, 6, 6, 6, 6, 6, 3, 8, 6, 4, 5, 6, 6, 9, 6, 6, 6, 8, 4, 8, 7, 7, 4, 4, 5, 8, 6, 5, 9, 6, 6, 6, 8, 6, 6, 4, 5, 12, 8, 6, 7, 6, 4, 8, 9, 4, 6, 8, 8, 12, 9, 7, 10, 8, 6, 8, 6, 9, 8, 4, 6, 5, 8
Offset: 1

Views

Author

Jeptha Davenport, Dec 31 2016

Keywords

Examples

			For a(1): b^c mod 1 = 0, so only 1 remainder set (0) is possible, and its size is 1.
For a(2): for any b, b^c will be even if b is even, or odd if b is odd, so b^c mod 2 has only 1 remainder for a given b (either (0), size 1, or (1), also size 1).
For a(5): choosing c for an arbitrary b, for b = 2, 2^2 mod 5 = 4, 2^3 mod 5 = 3, 2^4 mod 5 = 1, 2^5 mod 5 = 2, 2^6 mod 5 = 4, etc. (4 remainders); for base 4, 4^1 mod 5 = 4, 4^2 mod 5 = 1, 4^3 mod 5 = 4, etc. (2 remainders); for base 21, 21^1 mod 5 = 1, 21^819 mod 5 = 1, etc. (1 remainder); these are the only numbers of remainders which occur for any c given b for b^c modulo 5, so the number of remainder set sizes for n = 5 is 3 (4, 2, or 1-size remainder sets).
For a(100): number of remainder set sizes possible for any c given b is 10 (1, 2, 3, 4, 5, 6, 10, 11, 20, or 21-size remainder sets).
		

Crossrefs

First differs from A062821 at index n=15.

A300217 Numbers k such that tau(phi(k)) is a prime.

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 12, 17, 32, 34, 40, 48, 60, 85, 128, 136, 160, 170, 192, 204, 240, 1285, 2048, 2056, 2176, 2560, 2570, 2720, 3072, 3084, 3264, 3840, 4080, 4369, 8192, 8224, 8704, 8738, 10240, 10280, 10880, 12288, 12336, 13056, 15360, 15420, 16320, 65537
Offset: 1

Views

Author

Jaroslav Krizek, Feb 28 2018

Keywords

Comments

Numbers k such that A062821(k) = A000005(A000010(k)) is a prime.
Supersequence of A062514.
From Robert Israel, Mar 18 2018: (Start)
Numbers k such that A000010(k) = 2^(p-1) where p is prime.
Numbers of the form 2^m*Product_{i=1..k} (2^(2^(e_i))+1) where 2^(2^(e_i)+1) are distinct Fermat primes (A019434) and m + 1 + Sum_i 2^(e_i) is prime. In particular the prime terms are A249759.
(End)
According to a comment in A009087, if the sum of divisors is prime, then the number of divisors is also prime. - Michael B. Porter, Mar 23 2018

Examples

			17 is a term because phi(17) = 16, tau(16) = 5 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in[1..10^6] | IsPrime(NumberOfDivisors(EulerPhi(n)))];
    
  • Maple
    select(isprime @ numtheory:-tau @ numtheory:-phi, [$1..10^5]); # Robert Israel, Mar 18 2018
  • Mathematica
    Select[Range[2^16 + 1], PrimeQ@ DivisorSigma[0, EulerPhi@ #] &] (* Michael De Vlieger, Mar 01 2018 *)
  • PARI
    isok(k) = isprime(numdiv(eulerphi(k))); \\ Altug Alkan, Mar 04 2018
Previous Showing 11-20 of 22 results. Next