cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A355026 Irregular table read by rows: the n-th row gives the possible values of the number of divisors of numbers with n prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 6, 10, 12, 16, 18, 24, 32, 7, 12, 15, 16, 20, 24, 27, 32, 36, 48, 64, 8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128, 9, 16, 21, 24, 25, 28, 36, 40, 45, 48, 60, 64, 72, 80, 81, 96, 108, 128, 144, 192, 256
Offset: 0

Views

Author

Amiram Eldar, Jun 16 2022

Keywords

Comments

First differs from A074139 at the 8th row.
The n-th row begins with n+1, which corresponds to powers of primes, and ends with 2^n, which corresponds to squarefree numbers.
The n-th row contains the distinct values of the n-th row of A238963.

Examples

			Table begins:
  1;
  2;
  3, 4;
  4, 6, 8;
  5, 8, 9, 12, 16;
  6, 10, 12, 16, 18, 24, 32;
  7, 12, 15, 16, 20, 24, 27, 32, 36, 48, 64;
  8, 14, 18, 20, 24, 30, 32, 36, 40, 48, 54, 64, 72, 96, 128;
  ...
Numbers k with Omega(k) = 2 are either of the form p^2 with p prime, or of the form p1*p2 with p1 and p2 being distinct primes. The corresponding numbers of divisors are 3 and 4, respectively. Therefore the second row is {3, 4}.
		

Crossrefs

Programs

  • Mathematica
    row[n_] := Union[Times @@ (# + 1) & /@ IntegerPartitions[n]]; Array[row, 9, 0] // Flatten
  • PARI
    row(n) = { my (m=Map()); forpart(p=n, mapput(m,prod(k=1, #p, 1+p[k]),0)); Vec(m) } \\ Rémy Sigrist, Jun 17 2022

A212638 a(n) = n-th powerful number that is the first integer of its prime signature, divided by its largest squarefree divisor: A003557(A181800(n)).

Original entry on oeis.org

1, 2, 4, 8, 16, 6, 32, 12, 64, 24, 36, 128, 48, 72, 256, 96, 144, 30, 512, 192, 216, 288, 60, 1024, 384, 432, 576, 120, 2048, 768, 864, 180, 1152, 240, 1296, 4096, 1536, 1728, 360, 2304, 480, 2592, 8192, 3072, 3456, 720, 900, 4608, 960, 5184, 1080, 16384
Offset: 1

Views

Author

Matthew Vandermast, Jun 05 2012

Keywords

Comments

The number of second signatures represented by the divisors of A181800(n) equals the number of prime signatures represented among the divisors of a(n). Cf. A212172, A212644.
A permutation of A025487.

Examples

			6 (whose prime factorization is 2*3) is the largest squarefree divisor of 144 (whose prime factorization is 2^4*3^2). Since 144 = A181800(10), and 144/6 = 24, a(10) = 24.
		

Crossrefs

Formula

a(n) = A003557(A181800(n)).

A238968 Maximal level size of arcs in divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 6, 1, 3, 4, 7, 12, 1, 3, 5, 8, 11, 18, 30, 1, 3, 5, 8, 6, 12, 19, 15, 24, 38, 60, 1, 3, 5, 8, 7, 13, 20, 16, 19, 30, 46, 37, 58, 90, 140, 1, 3, 5, 8, 7, 13, 20, 8, 17, 20, 31, 47, 23, 36, 43, 66, 100, 52, 80, 122, 185, 280
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  1, 2;
  1, 3, 6;
  1, 3, 4, 7, 12;
  1, 3, 5, 8, 11, 18, 30;
  1, 3, 5, 8,  6, 12, 19, 15, 24, 38, 60;
  ...
		

Crossrefs

Cf. A238955 in canonical order.

Programs

  • PARI
    \\ here b(n) is A238946.
    b(n)={if(n==1, 0, my(v=vector(bigomega(n))); fordiv(n, d, if(d>1, v[bigomega(d)] += omega(d))); vecmax(v))}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 28 2020

Formula

T(n,k) = A238946(A063008(n,k)). - Andrew Howroyd, Mar 28 2020

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 28 2020

A238970 The number of nodes at even level in divisor lattice in canonical order.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 6, 8, 3, 5, 6, 8, 9, 12, 16, 4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 5, 8, 11, 14, 12, 18, 24, 13, 20, 23, 30, 40, 24, 32, 36, 48, 64, 41, 54, 72, 96, 128
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  2, 2;
  2, 3, 4;
  3, 4, 5,  6, 8;
  3, 5, 6,  8, 9, 12, 16;
  4, 6, 8, 10, 8, 12, 16, 14, 18, 24, 32;
  ...
		

Crossrefs

Cf. A238957 in canonical order.
Leftmost column gives A008619.
Last terms of rows give A011782.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> ceil(numtheory[tau](mul(ithprime(i)
            ^x[i], i=1..nops(x)))/2), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 25 2020
  • Mathematica
    A063008row[n_] := Product[Prime[k]^#[[k]], {k, 1, Length[#]}]& /@ IntegerPartitions[n];
    A038548[n_] := Ceiling[DivisorSigma[0, n]/2];
    T[n_] := A038548 /@ A063008row[n];
    Table[T[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Jan 30 2025 *)
  • PARI
    \\ here b(n) is A038548.
    b(n)={ceil(numdiv(n)/2)}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020

Formula

From Andrew Howroyd, Mar 25 2020: (Start)
T(n,k) = A038548(A063008(n,k)).
T(n,k) = A238963(n,k) - A238971(n,k).
T(n,k) = ceiling(A238963(n,k)/2). (End)

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020

A238971 The number of nodes at odd level in divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 2, 4, 4, 6, 8, 3, 5, 6, 8, 9, 12, 16, 3, 6, 7, 10, 8, 12, 16, 13, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 4, 8, 10, 14, 12, 18, 24, 12, 20, 22, 30, 40, 24, 32, 36, 48, 64, 40, 54, 72, 96, 128
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  1, 2;
  2, 3, 4;
  2, 4, 4,  6, 8;
  3, 5, 6,  8, 9, 12, 16;
  3, 6, 7, 10, 8, 12, 16, 13, 18, 24, 32;
  ...
		

Crossrefs

Cf. A238958 in canonical order.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> floor(numtheory[tau](mul(ithprime(i)
            ^x[i], i=1..nops(x)))/2), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 25 2020
  • PARI
    b(n)={numdiv(n)\2}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020

Formula

From Andrew Howroyd, Mar 25 2020: (Start)
T(n,k) = A056924(A063008(n,k)).
T(n,k) = A238963(n,k) - A238970(n,k).
T(n,k) = floor(A238963(n,k)/2). (End)

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020

A238972 The number of arcs from even to odd level vertices in divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 6, 2, 5, 6, 10, 16, 3, 7, 9, 14, 17, 26, 40, 3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96, 4, 10, 14, 22, 16, 30, 46, 32, 38, 58, 88, 68, 102, 152, 224, 4, 11, 16, 26, 19, 36, 56, 20, 41, 48, 74, 112, 52, 80, 93, 140, 208, 108, 162, 240, 352, 512
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  1, 2;
  2, 4,  6;
  2, 5,  6, 10, 16;
  3, 7,  9, 14, 17, 26, 40;
  3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96;
  ...
		

Crossrefs

Cf. A238959 in canonical order.

Programs

  • Maple
    with(numtheory):
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> ceil((p-> add(nops(factorset(d)), d=divisors
        (p)))(mul(ithprime(i)^x[i], i=1..nops(x)))/2), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 28 2020

Formula

From Andrew Howroyd, Mar 28 2020: (Start)
T(n,k) = A238950(A063008(n,k)).
T(n,k) = A238964(n,k) - A238973(n,k).
T(n,k) = ceiling(A238964(n,k)/2). (End)

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 28 2020

A238973 The number of arcs from odd to even level vertices in divisor lattice in canonical order.

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 6, 2, 5, 6, 10, 16, 2, 6, 8, 14, 16, 26, 40, 3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96, 3, 9, 13, 22, 15, 29, 46, 32, 37, 58, 88, 67, 102, 152, 224, 4, 11, 16, 26, 19, 36, 56, 20, 41, 48, 74, 112, 52, 80, 93, 140, 208, 108, 162, 240, 352, 512
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  0;
  1, 2;
  1, 3,  6;
  2, 5,  6, 10, 16;
  2, 6,  8, 14, 16, 26, 40;
  3, 8, 11, 18, 12, 23, 36, 27, 42, 64, 96;
  ...
		

Crossrefs

Cf. A238960 in canonical order.

Formula

From Andrew Howroyd, Mar 28 2020: (Start)
T(n,k) = A238951(A063008(n,k)).
T(n,k) = A238964(n,k) - A238972(n,k).
T(n,k) = floor(A238964(n,k)/2). (End)

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 28 2020

A238967 Maximal size of an antichain in canonical order.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 6, 1, 2, 3, 4, 5, 7, 10, 1, 2, 3, 4, 4, 6, 8, 7, 10, 14, 20, 1, 2, 3, 4, 4, 6, 8, 7, 8, 11, 15, 13, 18, 25, 35, 1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 10, 14, 16, 22, 30, 19, 26, 36, 50, 70, 1, 2, 3, 4, 4, 6, 8, 5, 8, 9, 12, 16, 9, 11, 15, 17, 23, 31, 12, 19, 26, 22, 30, 41, 56, 35, 48, 66, 91, 126
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1, 2;
  1, 2, 3;
  1, 2, 3, 4, 6;
  1, 2, 3, 4, 5, 7, 10;
  1, 2, 3, 4, 4, 6,  8, 7, 10, 14, 20;
  ...
		

Crossrefs

Cf. A238954 in canonical order.

Programs

  • Maple
    with(numtheory):
    f:= n-> (m-> add(`if`(bigomega(d)=m, 1, 0),
         d=divisors(n)))(iquo(bigomega(n), 2)):
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> f(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 26 2020
  • PARI
    \\ here b(n) is A096825.
    b(n)={my(h=bigomega(n)\2); sumdiv(n, d, bigomega(d)==h)}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020

Formula

T(n,k) = A096825(A063008(n,k)). - Andrew Howroyd, Mar 25 2020

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020

A238969 Degree of divisor lattice in divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 2, 3, 4, 4, 4, 2, 3, 4, 4, 5, 5, 5, 2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 2, 3, 4, 4, 4, 5, 5, 4, 5, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 2, 3, 4, 4, 4, 5, 5, 4, 5, 6, 6, 6, 5, 6, 6, 7, 7, 7, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  1;
  2, 2;
  2, 3, 3;
  2, 3, 4, 4, 4;
  2, 3, 4, 4, 5, 5, 5;
  2, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6;
  ...
		

Crossrefs

Cf. A238956 in canonical order.

Programs

  • PARI
    C(sig)={sum(i=1, #sig, if(sig[i]>1, 2, 1))}
    Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 26 2020

Formula

T(n,k) = A238949(A063008(n,k)). - Andrew Howroyd, Mar 26 2020

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 26 2020

A238974 The size (the number of arcs) in the transitive closure of divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 3, 5, 6, 12, 19, 10, 22, 27, 42, 65, 15, 35, 48, 74, 90, 138, 211, 21, 51, 75, 115, 84, 156, 238, 189, 288, 438, 665, 28, 70, 108, 165, 130, 240, 365, 268, 324, 492, 746, 594, 900, 1362, 2059, 36, 92, 147, 224, 186, 342, 519, 200, 410, 495, 750, 1135, 552, 836, 1008, 1524, 2302, 1215, 1836, 2772, 4182, 6305
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Examples

			Triangle T(n,k) begins:
   0;
   1;
   3,  5;
   6, 12, 19;
  10, 22, 27,  42, 65;
  15, 35, 48,  74, 90, 138, 211;
  21, 51, 75, 115, 84, 156, 238, 189, 288, 438, 665;
  ...
		

Crossrefs

Cf. A238961 in canonical order.

Programs

  • Maple
    with(numtheory):
    f:= n-> add(tau(d), d=divisors(n) minus {n}):
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> f(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 26 2020
  • PARI
    \\ here b(n) is A238952.
    b(n) = {sumdivmult(n, d, numdiv(d)) - numdiv(n)}
    N(sig)={prod(k=1, #sig, prime(k)^sig[k])}
    Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 26 2020

Formula

T(n,k) = A238952(A063008(n,k)). - Andrew Howroyd, Mar 26 2020

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 26 2020
Previous Showing 21-30 of 34 results. Next