cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A063447 Continued fraction for Pi * sqrt(2).

Original entry on oeis.org

4, 2, 3, 1, 7, 7, 1, 3, 1, 1, 1, 1, 4, 10, 8, 1, 2, 3, 3, 2, 5, 8, 6, 14, 1, 9, 1, 1, 1, 2, 6, 2, 2, 4, 3, 2, 2, 6, 1, 12, 1, 35, 32, 1, 3, 5, 15, 1, 2, 1, 6, 1, 2, 1, 1, 2, 16, 6, 1, 7, 1, 2, 2, 1, 2, 1, 1, 27, 3, 6, 4, 26, 2, 1, 31, 2, 1, 1, 12, 1, 1, 2, 2, 1, 24, 5, 2, 591, 6, 33, 1, 8, 1, 2, 6, 2
Offset: 0

Views

Author

Jason Earls, Jul 24 2001

Keywords

Examples

			4.442882938158366247015880990... = 4 + 1/(2 + 1/(3 + 1/(1 + 1/(7 + ...))))
		

Crossrefs

Cf. A063448 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(150)); R:= RealField(); ContinuedFraction(Pi(R)*Sqrt(2)); // G. C. Greubel, Aug 16 2018
  • Mathematica
    ContinuedFraction[Pi*Sqrt[2],300] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
  • PARI
    contfrac(Pi*sqrt(2))
    
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi*sqrt(2)); for (n=1, 20000, write("b063447.txt", n-1, " ", x[n])) \\ Harry J. Smith, Aug 21 2009
    

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024

A343392 Decimal expansion of 2*Pi*sqrt(2).

Original entry on oeis.org

8, 8, 8, 5, 7, 6, 5, 8, 7, 6, 3, 1, 6, 7, 3, 2, 4, 9, 4, 0, 3, 1, 7, 6, 1, 9, 8, 0, 1, 2, 1, 3, 8, 7, 3, 9, 7, 2, 2, 9, 2, 4, 3, 3, 7, 8, 7, 5, 1, 3, 8, 0, 4, 4, 6, 1, 7, 0, 7, 9, 1, 2, 1, 3, 9, 1, 2, 8, 6, 9, 5, 8, 6, 1, 9, 8, 9, 4, 7, 8, 2, 1, 1, 5, 0, 6, 5, 3, 8, 6, 9
Offset: 1

Views

Author

Bernard Schott, Apr 13 2021

Keywords

Comments

Circumference of the circumcircle of the square whose sides = 2.
Hypotenuse of the right isosceles triangle with the two legs = 2*Pi.
Perimeter of the closed curve with implicit Cartesian equation x^2 + y^2 = abs(x) + abs(y). This curve in the first quadrant is the half-circle with equation (x-1/2)^2 + (y-1/2)^2 = 1/2, hence, the curve is the union of 4 identical half-circles with diameter = sqrt(2) obtained by symmetries. (See link Curve.)
S. Ramanujan produced a curious approximation to 2*Pi*sqrt(2) by dividing 99^2 by 1103 (see link Prime Curios! and A343393).

Examples

			8.88576587631673249403176198012138739722924337875138044617
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 54.

Crossrefs

Programs

  • Maple
    evalf(2*Pi*sqrt(2),120);
  • Mathematica
    RealDigits[2*Sqrt[2]*Pi, 10, 100][[1]] (* Amiram Eldar, Apr 13 2021 *)

Formula

2*Pi*sqrt(2) = A019692 * A002193 = A010466 * A000796 = 2 * A063448.

A217458 Decimal expansion of 2^(Pi*sqrt(2)).

Original entry on oeis.org

2, 1, 7, 4, 9, 0, 8, 7, 0, 5, 4, 3, 7, 7, 4, 5, 8, 3, 3, 4, 0, 9, 9, 2, 0, 8, 2, 6, 6, 0, 1, 1, 3, 9, 5, 2, 3, 3, 8, 5, 8, 8, 4, 0, 8, 8, 9, 7, 4, 1, 8, 4, 2, 6, 7, 5, 9, 7, 7, 6, 7, 1, 9, 8, 0, 3, 8, 8, 3, 5, 0, 6, 9, 8, 2, 6, 2, 0, 5, 4, 6, 1, 0, 2, 1, 2, 7, 5, 6, 1, 7, 6, 4, 7, 3, 7, 9, 0, 0, 8
Offset: 2

Views

Author

Jani Melik, Oct 03 2012

Keywords

Examples

			21.7490870543774583340992082660113952338588408897418426759...
		

Crossrefs

Cf. A063448 (Pi * sqrt(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 2^(Pi(R)*Sqrt(2)); // G. C. Greubel, Oct 05 2018
  • Mathematica
    RealDigits[2^(Pi*Sqrt[2]), 10, 100][[1]] (* G. C. Greubel, Oct 05 2018 *)
  • Maxima
    fpprec : 100; ev(bfloat(2^(%pi*sqrt(2)))); /* Martin Ettl, Oct 04 2012 */
    
  • PARI
    default(realprecision, 100); 2^(Pi*sqrt(2)) \\ G. C. Greubel, Oct 05 2018
    
  • Sage
    2^(pi*sqrt(2)).n(digits=100)
    

A359533 Decimal expansion of Sum_{k>=0} (-1/64)^k*binomial(2*k, k)^3*(4*k + 1)*H_k, where H_k is the k-th harmonic number (negated).

Original entry on oeis.org

2, 7, 6, 4, 2, 7, 2, 0, 4, 2, 4, 5, 9, 8, 6, 5, 7, 3, 0, 9, 2, 6, 3, 9, 8, 2, 5, 6, 1, 6, 8, 8, 9, 9, 4, 6, 7, 8, 3, 7, 4, 0, 7, 9, 5, 1, 9, 0, 4, 8, 5, 0, 6, 3, 0, 3, 2, 7, 7, 6, 9, 2, 0, 2, 7, 0, 3, 3, 7, 9, 6, 9, 4, 4, 5, 8, 9, 8, 7, 9, 7, 1, 0, 9, 8, 0, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 04 2023

Keywords

Examples

			0.276427204245986573092639825616889946783740795...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[(Gamma[1/8]Gamma[3/8]/(Gamma[1/4]Gamma[3/4]))^2/(6Sqrt[2]Pi)-4Log[2]/Pi,100]]]

Formula

Equals 4*log(2)/Pi - (Gamma(1/8)*Gamma(3/8)/(Gamma(1/4)*Gamma(3/4)))^2/(6*sqrt(2)*Pi).
Equals 4*log(2)/Pi - (Gamma(1/8)*Gamma(3/8))^2/(12*sqrt(2)*Pi^3).

A376207 Numbers k such that ceiling(2*Pi*k/sqrt(2)) != ceiling(Pi/arcsin(sqrt(2)/(2*k))).

Original entry on oeis.org

1, 70, 569, 58704, 15770314
Offset: 1

Views

Author

Hugo Pfoertner, Sep 15 2024

Keywords

Comments

2*n/sqrt(2) > 1/arcsin(sqrt(2)/(2*n)) for all n > 0.
Limit_{x->oo} 2*x/sqrt(2) - 1/arcsin(sqrt(2)/(2*x)) = 0.

Examples

			  n    k=a(n)        2*Pi*k/sqrt(2)   Pi/arcsin(sqrt(2)/(2*k))
  1         1         4.44288293816             4.000000000000
  2        70       311.00180567109           310.996516371805
  3       569      2528.00039181211          2527.999741125982
  4     58704    260815.00000164873        260814.999995341832
  5  15770314  70065659.00000001744      70065658.999999993965
		

Crossrefs

A347055 Decimal expansion of Pi * (sqrt(3) - sqrt(2)).

Original entry on oeis.org

9, 9, 8, 5, 1, 5, 1, 5, 4, 5, 4, 4, 2, 8, 7, 3, 0, 4, 7, 6, 6, 3, 5, 3, 7, 8, 2, 8, 6, 5, 7, 7, 3, 4, 9, 8, 2, 3, 7, 5, 7, 7, 0, 5, 4, 9, 0, 2, 5, 3, 1, 5, 0, 3, 6, 2, 4, 2, 5, 9, 1, 9, 9, 2, 0, 7, 9, 3, 4, 7, 5, 0, 2, 7, 9, 5, 8, 7, 7, 4, 0, 4, 7, 7, 0, 4, 8
Offset: 0

Views

Author

Sean A. Irvine, Aug 14 2021

Keywords

Examples

			0.9985151545442873047663537828657734982375770549025315...
		

Crossrefs

Programs

Formula

Equals Integral_{x>=0} log(1 + 1/(x^2+2)) dx.
Previous Showing 11-16 of 16 results.