cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 241 results. Next

A321449 Regular triangle read by rows where T(n,k) is the number of twice-partitions of n with a combined total of k parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 4, 5, 5, 0, 1, 4, 8, 8, 7, 0, 1, 6, 13, 19, 16, 11, 0, 1, 6, 17, 27, 32, 24, 15, 0, 1, 8, 24, 47, 61, 62, 41, 22, 0, 1, 8, 30, 63, 99, 111, 100, 61, 30, 0, 1, 10, 38, 94, 158, 209, 210, 170, 95, 42, 0, 1, 10, 45, 119, 229, 328, 382, 348, 259, 136, 56
Offset: 0

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

A twice partition of n (A063834) is a choice of an integer partition of each part in an integer partition of n.

Examples

			Triangle begins:
   1
   0   1
   0   1   2
   0   1   2   3
   0   1   4   5   5
   0   1   4   8   8   7
   0   1   6  13  19  16  11
   0   1   6  17  27  32  24  15
   0   1   8  24  47  61  62  41  22
   0   1   8  30  63  99 111 100  61  30
The sixth row {0, 1, 6, 13, 19, 16, 11} counts the following twice-partitions:
  (6)  (33)    (222)      (2211)        (21111)          (111111)
       (42)    (321)      (3111)        (1111)(2)        (111)(111)
       (51)    (411)      (111)(3)      (111)(21)        (1111)(11)
       (3)(3)  (21)(3)    (211)(2)      (21)(111)        (11111)(1)
       (4)(2)  (22)(2)    (21)(21)      (211)(11)        (11)(11)(11)
       (5)(1)  (31)(2)    (22)(11)      (2111)(1)        (111)(11)(1)
               (3)(21)    (221)(1)      (11)(11)(2)      (1111)(1)(1)
               (32)(1)    (3)(111)      (111)(2)(1)      (11)(11)(1)(1)
               (4)(11)    (31)(11)      (11)(2)(11)      (111)(1)(1)(1)
               (41)(1)    (311)(1)      (2)(11)(11)      (11)(1)(1)(1)(1)
               (2)(2)(2)  (11)(2)(2)    (21)(11)(1)      (1)(1)(1)(1)(1)(1)
               (3)(2)(1)  (2)(11)(2)    (211)(1)(1)
               (4)(1)(1)  (21)(2)(1)    (11)(2)(1)(1)
                          (2)(2)(11)    (2)(11)(1)(1)
                          (22)(1)(1)    (21)(1)(1)(1)
                          (3)(11)(1)    (2)(1)(1)(1)(1)
                          (31)(1)(1)
                          (2)(2)(1)(1)
                          (3)(1)(1)(1)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          g(n, i-1)+ `if`(i>n, 0, expand(g(n-i, i)*x)))
        end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          b(n, i-1)+ `if`(i>n, 0, expand(b(n-i, i)*g(i$2))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Nov 11 2018
  • Mathematica
    Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@ptn],Length[Join@@#]==k&],{ptn,IntegerPartitions[n]}]],{n,0,10},{k,0,n}]
    (* Second program: *)
    g[n_, i_] := g[n, i] = If[n == 0 || i == 1, x^n,
         g[n, i - 1] + If[i > n, 0, Expand[g[n - i, i]*x]]];
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n,
         b[n, i - 1] + If[i > n, 0, Expand[b[n - i, i]*g[i, i]]]];
    T[n_] := CoefficientList[b[n, n], x];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

O.g.f.: Product_{n >= 0} 1/(1 - x^n * (Sum_{0 <= k <= n} A008284(n,k) * t^k)).

A336135 Number of ways to split an integer partition of n into contiguous subsequences with strictly decreasing sums.

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 29, 50, 79, 135, 213, 337, 522, 796, 1191, 1791, 2603, 3799, 5506, 7873, 11154, 15768, 21986, 30565, 42218, 57917, 78968, 107399, 144932, 194889, 261061, 347773, 461249, 610059, 802778, 1053173, 1377325, 1793985, 2329009, 3015922, 3891142
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(5) = 16 splittings:
  (1)  (2)    (3)        (4)          (5)
       (1,1)  (2,1)      (2,2)        (3,2)
              (1,1,1)    (3,1)        (4,1)
              (2),(1)    (2,1,1)      (2,2,1)
              (1,1),(1)  (3),(1)      (3,1,1)
                         (1,1,1,1)    (3),(2)
                         (2,1),(1)    (4),(1)
                         (1,1,1),(1)  (2,1,1,1)
                                      (2,2),(1)
                                      (3),(1,1)
                                      (3,1),(1)
                                      (1,1,1,1,1)
                                      (2,1),(1,1)
                                      (2,1,1),(1)
                                      (1,1,1),(1,1)
                                      (1,1,1,1),(1)
		

Crossrefs

The version with equal sums is A317715.
The version with strictly increasing sums is A336134.
The version with weakly increasing sums is A336136.
The version with weakly decreasing sums is A316245.
The version with different sums is A336131.
Starting with a composition gives A304961.
Starting with a strict partition gives A318684.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],Greater@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]
  • PARI
    a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f, self()(r,min(m,t-1),t-1,0,0)) + self()(r,m-1,s,t,0) + if(t+m<=s, self()(r-m,min(m,r-m),s,t+m,1)))); recurse(n,n,n,0)} \\ Andrew Howroyd, Jan 18 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 18 2024

A066815 Number of partitions of n into sums of products.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 14, 19, 33, 45, 69, 94, 148, 197, 289, 390, 575, 762, 1086, 1439, 2040, 2687, 3712, 4874, 6749, 8792, 11918, 15526, 20998, 27164, 36277, 46820, 62367, 80146, 105569, 135326, 177979, 227139, 296027, 377142, 490554, 622526, 804158
Offset: 0

Views

Author

Vladeta Jovovic, Jan 20 2002

Keywords

Comments

Number of ways to choose a factorization of each part of an integer partition of n. - Gus Wiseman, Sep 05 2018
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1, g(n) = A001055(n). - Seiichi Manyama, Nov 14 2018

Examples

			From _Gus Wiseman_, Sep 05 2018: (Start)
The a(6) = 14 partitions of 6 into sums of products:
  6, 2*3,
  5+1, 4+2, 2*2+2, 3+3,
  4+1+1, 2*2+1+1, 3+2+1, 2+2+2,
  3+1+1+1, 2+2+1+1,
  2+1+1+1+1,
  1+1+1+1+1+1.
(End)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Length[Join@@Table[Tuples[facs/@ptn],{ptn,IntegerPartitions[n]}]],{n,20}] (* Gus Wiseman, Sep 05 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1-A001055(k)*x^k).
a(n) = 1/n*Sum_{k=1..n} a(n-k)*b(k), n > 0, a(0)=1, b(k)=Sum_{d|k} d*(A001055(d))^(k/d).

Extensions

Renamed by T. D. Noe, May 24 2011

A336342 Number of ways to choose a partition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 2, 7, 11, 29, 81, 155, 312, 708, 1950, 3384, 7729, 14929, 32407, 81708, 151429, 305899, 623713, 1234736, 2463743, 6208978, 10732222, 22487671, 43000345, 86573952, 160595426, 324990308, 744946690, 1336552491, 2629260284, 5050032692, 9681365777
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
Is there a simple generating function?

Examples

			The a(1) = 1 through a(4) = 11 ways:
  (1)  (2)    (3)        (4)
       (1,1)  (2,1)      (2,2)
              (1,1,1)    (3,1)
              (1),(2)    (1),(3)
              (2),(1)    (2,1,1)
              (1),(1,1)  (3),(1)
              (1,1),(1)  (1,1,1,1)
                         (1),(2,1)
                         (2,1),(1)
                         (1),(1,1,1)
                         (1,1,1),(1)
		

Crossrefs

Multiset partitions of partitions are A001970.
Strict compositions are counted by A032020, A072574, and A072575.
Splittings of partitions are A323583.
Splittings of partitions with distinct sums are A336131.
Partitions:
- Partitions of each part of a partition are A063834.
- Compositions of each part of a partition are A075900.
- Strict partitions of each part of a partition are A270995.
- Strict compositions of each part of a partition are A336141.
Strict partitions:
- Partitions of each part of a strict partition are A271619.
- Compositions of each part of a strict partition are A304961.
- Strict partitions of each part of a strict partition are A279785.
- Strict compositions of each part of a strict partition are A336142.
Compositions:
- Partitions of each part of a composition are A055887.
- Compositions of each part of a composition are A133494.
- Strict partitions of each part of a composition are A304969.
- Strict compositions of each part of a composition are A307068.
Strict compositions:
- Partitions of each part of a strict composition are A336342.
- Compositions of each part of a strict composition are A336127.
- Strict partitions of each part of a strict composition are A336343.
- Strict compositions of each part of a strict composition are A336139.

Programs

  • Mathematica
    Table[Length[Join@@Table[Tuples[IntegerPartitions/@ctn],{ctn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,0,10}]
  • PARI
    seq(n)={[subst(serlaplace(p),y,1) | p<-Vec(prod(k=1, n, 1 + y*x^k*numbpart(k) + O(x*x^n)))]} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=0} k! * [y^k](Product_{j>=1} 1 + y*x^j*A000041(j)). - Andrew Howroyd, Apr 16 2021

A357977 Replace prime(k) with prime(A000041(k)) in the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 11, 8, 9, 10, 17, 12, 31, 22, 15, 16, 47, 18, 79, 20, 33, 34, 113, 24, 25, 62, 27, 44, 181, 30, 263, 32, 51, 94, 55, 36, 389, 158, 93, 40, 547, 66, 761, 68, 45, 226, 1049, 48, 121, 50, 141, 124, 1453, 54, 85, 88, 237, 362, 1951, 60, 2659, 526
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2022

Keywords

Comments

In the definition, taking A000041(k) instead of prime(A000041(k)) gives A299200.

Examples

			We have 35 = prime(3) * prime(4), so a(35) = prime(A000041(3)) * prime(A000041(4)) = prime(3) * prime(5) = 55.
		

Crossrefs

Applying the same transformation again gives A357979.
The strict version is A357978.
Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mtf[f_][n_]:=Product[If[f[i]==0,1,Prime[f[i]]],{i,primeMS[n]}];
    Array[mtf[PartitionsP],100]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = prime(numbpart(primepi(f[k,1])))); factorback(f); \\ Michel Marcus, Oct 25 2022

A357980 Replace prime(k) with prime(A000720(k)) in the prime factorization of n, assuming prime(0) = 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 6, 1, 7, 4, 7, 3, 6, 5, 7, 2, 9, 5, 8, 3, 7, 6, 11, 1, 10, 7, 9, 4, 11, 7, 10, 3, 13, 6, 13, 5, 12, 7, 13, 2, 9, 9, 14, 5, 13, 8, 15, 3, 14, 7, 17, 6, 17, 11, 12, 1, 15, 10, 19, 7, 14, 9, 19, 4, 19, 11, 18, 7, 15, 10
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2022

Keywords

Comments

In the definition, taking A000720(k) in place of prime(A000720(k)) gives A357984.

Examples

			We have 90 = prime(1) * prime(2)^2 * prime(3), so a(90) = prime(0) * prime(1)^2 * prime(2) = 12.
		

Crossrefs

Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
The version for p instead of pi is A357977, strict A357978.
The triangular version is A357984.
A000040 lists the prime numbers.
A000720 = PrimePi.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mtf[f_][n_]:=Product[If[f[i]==0,1,Prime[f[i]]],{i,primeMS[n]}];
    Array[mtf[PrimePi],100]
  • PARI
    myprime(n) = if (n==0, 1, prime(n));
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = myprime(primepi(primepi(f[k,1])))); factorback(f); \\ Michel Marcus, Oct 25 2022

A302491 Prime numbers of squarefree index.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 29, 31, 41, 43, 47, 59, 67, 73, 79, 83, 101, 109, 113, 127, 137, 139, 149, 157, 163, 167, 179, 181, 191, 199, 211, 233, 241, 257, 269, 271, 277, 283, 293, 313, 317, 331, 347, 349, 353, 367, 373, 389, 397, 401, 421, 431, 439, 443, 449, 461
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Maple
    map(ithprime, select(numtheory:-issqrfree, [$1..500])); # Robert Israel, Nov 06 2023
  • Mathematica
    Prime/@Select[Range[100],SquareFreeQ]
  • PARI
    forprime(p=1, 500, if(issquarefree(primepi(p)), print1(p, ", "))) \\ Felix Fröhlich, Apr 10 2018
    
  • PARI
    list(lim)=my(v=List(),k); forprime(p=2,lim\1, if(issquarefree(k++), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 03 2023

Formula

a(n) = A000040(A005117(n)).
a(n) ~ kn log n, where k = Pi^2/6. - Charles R Greathouse IV, Aug 03 2023

A279791 Number of twice-partitions of type (Q,R,Q) and weight n.

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 5, 8, 8, 16, 12, 23, 18, 36, 33, 50, 38, 84, 54, 106, 100, 155, 104, 244, 142, 301, 270, 436, 256, 684, 340, 788, 670, 1044, 585, 1868, 760, 1878, 1600, 2647
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2016

Keywords

Examples

			The a(8)=8 twice-partitions of type (Q,R,Q) are:
((8)), ((71)), ((62)), ((53)),
((521)), ((4)(31)), ((31)(4)), ((431)).
		

Crossrefs

Programs

  • Mathematica
    nn=20;
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Total[Total[Factorial/@Length/@Select[sps[Sort[#]],SameQ@@Total/@#&]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,nn}]

A300300 Number of ways to choose a multiset of strict partitions, or odd partitions, of odd numbers, whose weights sum to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 9, 14, 20, 32, 48, 69, 105, 150, 225, 322, 472, 669, 977, 1379, 1980, 2802, 3977, 5602, 7892, 11083, 15494, 21688, 30147, 42007, 58143, 80665, 111199, 153640, 211080, 290408, 397817, 545171, 744645, 1016826, 1385124, 1885022, 2561111, 3474730
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2018

Keywords

Examples

			The a(6) = 9 multiset partitions using odd-weight strict partitions: (5)(1), (14)(1), (3)(3), (32)(1), (3)(21), (3)(1)(1)(1), (21)(21), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1).
The a(6) = 9 multiset partitions using odd partitions: (5)(1), (3)(3), (311)(1), (3)(111), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
          `if`(d::odd, d, 0), d=divisors(j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
          `if`(d::odd, b(d)*d, 0), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 02 2018
  • Mathematica
    nn=50;
    ser=Product[1/(1-x^n)^PartitionsQ[n],{n,1,nn,2}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

Formula

Euler transform of {Q(1), 0, Q(3), 0, Q(5), 0, ...} where Q = A000009.

A300335 Number of ordered set partitions of {1,...,n} with weakly increasing block-sums.

Original entry on oeis.org

1, 1, 2, 6, 18, 65, 258, 1156, 5558, 29029, 161942, 967921, 6110687, 40807420, 286177944, 2107745450, 16202590638, 130043111849, 1085011337141, 9408577992091, 84501248359552, 786018565954838, 7550153439748394
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2018

Keywords

Examples

			The a(3) = 6 ordered set partitions: (123), (1)(23), (2)(13), (12)(3), (3)(12), (1)(2)(3).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[Times@@Factorial/@Length/@GatherBy[sptn,Total],{sptn,sps[Range[n]]}],{n,8}]

Extensions

a(12)-a(15) from Alois P. Heinz, Mar 03 2018
a(16)-a(22) from Christian Sievers, Aug 30 2024
Previous Showing 71-80 of 241 results. Next