cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 244 results. Next

A336132 Number of ways to split a strict integer partition of n into contiguous subsequences all having different sums.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 8, 11, 14, 21, 30, 37, 51, 66, 86, 120, 146, 186, 243, 303, 378, 495, 601, 752, 927, 1150, 1395, 1741, 2114, 2571, 3134, 3788, 4541, 5527, 6583, 7917, 9511, 11319, 13448, 16040, 18996, 22455, 26589, 31317, 36844, 43518, 50917, 59655, 69933
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(7) = 14 splits:
  (1)  (2)  (3)      (4)      (5)      (6)          (7)
            (2,1)    (3,1)    (3,2)    (4,2)        (4,3)
            (2),(1)  (3),(1)  (4,1)    (5,1)        (5,2)
                              (3),(2)  (3,2,1)      (6,1)
                              (4),(1)  (4),(2)      (4,2,1)
                                       (5),(1)      (4),(3)
                                       (3,2),(1)    (5),(2)
                                       (3),(2),(1)  (6),(1)
                                                    (4),(2,1)
                                                    (4,2),(1)
                                                    (4),(2),(1)
		

Crossrefs

The version with equal instead of different sums is A318683.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,0,30}]

A294788 Number of twice-factorizations of type (Q,P,Q) and product n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 5, 1, 3, 3, 3, 1, 5, 1, 5, 3, 3, 1, 12, 1, 3, 3, 5, 1, 12, 1, 5, 3, 3, 3, 13, 1, 3, 3, 12, 1, 12, 1, 5, 5, 3, 1, 19, 1, 5, 3, 5, 1, 12, 3, 12, 3, 3, 1, 26, 1, 3, 5, 11, 3, 12, 1, 5, 3, 12, 1, 26, 1, 3, 5, 5, 3, 12, 1, 19, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2017

Keywords

Comments

a(n) is the number of ways to choose a product-preserving permutation of a set partition of a factorization of n into distinct factors greater than one.

Examples

			The a(36) = 13 twice-factorizations are: (2)*(3)*(6), (2)*(3*6), (6)*(2*3), (2*3)*(6), (2*6)*(3), (2*3*6), (2)*(18), (2*18), (3)*(12), (3*12), (4)*(9), (4*9), (36).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Total[Sum[Times@@Factorial/@Length/@Split[Sort[Times@@@f]],{f,sps[Sort[#]]}]&/@sfs[n]],{n,nn}]

A300439 Number of odd enriched p-trees of weight n (all outdegrees are odd).

Original entry on oeis.org

1, 1, 2, 2, 5, 7, 18, 29, 75, 132, 332, 651, 1580, 3268, 7961, 16966, 40709, 89851, 215461, 484064, 1159568, 2641812, 6337448, 14622880, 35051341, 81609747, 196326305, 459909847, 1107083238, 2611592457, 6299122736, 14926657167, 36069213786, 85809507332
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

An odd enriched p-tree of weight n > 0 is either a single node of weight n, or a finite odd-length sequence of at least 3 odd enriched p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(6) = 7 odd enriched p-trees: 6, (411), (321), (222), ((111)21), ((211)11), (21111).
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=1+Sum[Times@@f/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
    Array[f,40]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)) - 1/prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)), n)/2); v} \\ Andrew Howroyd, Aug 26 2018

A336131 Number of ways to split an integer partition of n into contiguous subsequences all having different sums.

Original entry on oeis.org

1, 1, 2, 6, 9, 20, 44, 74, 123, 231, 441, 681, 1188, 1889, 3110, 5448, 8310, 13046
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(4) = 9 splits:
  (1)  (2)    (3)        (4)
       (1,1)  (2,1)      (2,2)
              (1,1,1)    (3,1)
              (2),(1)    (2,1,1)
              (1),(1,1)  (3),(1)
              (1,1),(1)  (1,1,1,1)
                         (2,1),(1)
                         (1),(1,1,1)
                         (1,1,1),(1)
		

Crossrefs

The version with equal instead of different sums is A317715.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a strict partition gives A336132.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],UnsameQ@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]

A356065 Squarefree numbers whose prime indices are all prime-powers.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 21, 23, 31, 33, 35, 41, 51, 53, 55, 57, 59, 67, 69, 77, 83, 85, 93, 95, 97, 103, 105, 109, 115, 119, 123, 127, 131, 133, 155, 157, 159, 161, 165, 177, 179, 187, 191, 201, 205, 209, 211, 217, 227, 231, 241, 249, 253, 255, 265, 277
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2022

Keywords

Examples

			105 has prime indices {2,3,4}, all three of which are prime-powers, so 105 is in the sequence.
		

Crossrefs

The multiplicative version (factorizations) is A050361, non-strict A000688.
Heinz numbers of the partitions counted by A054685, with 1's A106244, non-strict A023894, non-strict with 1's A023893.
Counting twice-partitions of this type gives A279786, non-strict A279784.
Counting twice-factorizations gives A295935, non-strict A296131.
These are the odd products of distinct elements of A302493.
Allowing prime index 1 gives A302496, non-strict A302492.
The case of primes (instead of prime-powers) is A302590, non-strict A076610.
These are the squarefree positions of 1's in A355741.
This is the squarefree case of A355743, complement A356066.
A001222 counts prime-power divisors.
A005117 lists the squarefree numbers.
A034699 gives maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&And@@PrimePowerQ/@primeMS[#]&]

Formula

Intersection of A005117 and A355743.

A358908 Number of finite sequences of distinct integer partitions with total sum n and weakly decreasing lengths.

Original entry on oeis.org

1, 1, 2, 6, 10, 23, 50, 95, 188, 378, 747, 1414, 2739, 5179, 9811, 18562, 34491, 64131, 118607, 218369, 400196, 731414, 1328069, 2406363, 4346152, 7819549, 14027500, 25090582, 44749372, 79586074, 141214698, 249882141, 441176493, 777107137, 1365801088, 2395427040, 4192702241
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2022

Keywords

Examples

			The a(1) = 1 through a(4) = 10 sequences:
  ((1))  ((2))   ((3))      ((4))
         ((11))  ((21))     ((22))
                 ((111))    ((31))
                 ((1)(2))   ((211))
                 ((2)(1))   ((1111))
                 ((11)(1))  ((1)(3))
                            ((3)(1))
                            ((11)(2))
                            ((21)(1))
                            ((111)(1))
		

Crossrefs

This is the distinct case of A055887 with weakly decreasing lengths.
This is the distinct case is A141199.
The case of distinct lengths also is A358836.
This is the case of A358906 with weakly decreasing lengths.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
A358912 counts sequences of partitions with distinct lengths.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Mathematica
    ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
    Table[Length[Select[ptnseq[n],UnsameQ@@#&&GreaterEqual@@Length/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    R(n,v) = {[subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, #v, (1 + y*x^k + O(x*x^n))^v[k] ))]}
    seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, Ser(R(n, Vec(polcoef(g, k, y), -n)))  ))} \\ Andrew Howroyd, Dec 31 2022

Extensions

Terms a(16) and beyond from Andrew Howroyd, Dec 31 2022

A279788 Twice partitioned numbers where the first partition is constant and the latter partitions are strict.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 10, 6, 12, 17, 21, 13, 57, 19, 49, 87, 86, 39, 240, 55, 279, 330, 235, 105, 1141, 386, 491, 1217, 1461, 257, 4804, 341, 2968, 4225, 1958, 5898, 18961, 761, 3782, 15007, 30572, 1261, 66245, 1611, 32523, 106951, 13122, 2591, 283013, 81390, 182873
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2016

Keywords

Examples

			The a(6)=10 twice-partitions are:
((6)), ((51)), ((42)), ((3)(3)), ((3)(21)), ((21)(3)),
((321)), ((2)(2)(2)), ((21)(21)), ((1)(1)(1)(1)(1)(1)).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(b(n/d)^d, d=divisors(n)))
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Dec 20 2016
  • Mathematica
    Table[DivisorSum[n,PartitionsQ[n/#]^#&],{n,20}]

A300443 Number of binary enriched p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 3, 8, 15, 41, 96, 288, 724, 2142, 5838, 17720, 49871, 151846, 440915, 1363821, 4019460, 12460721, 37374098, 116809752, 353904962, 1109745666, 3396806188, 10712261952, 33006706419, 104357272687, 323794643722, 1027723460639, 3204413808420, 10193485256501
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

A binary enriched p-tree of weight n is either a single node of weight n, or an ordered pair of binary enriched p-trees with weakly decreasing weights summing to n.

Examples

			The a(4) = 8 binary enriched p-trees: 4, (31), (22), ((21)1), ((11)2), (2(11)), (((11)1)1), ((11)(11)).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(a(j)*a(n-j), j=1..n/2)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 06 2018
  • Mathematica
    j[n_]:=j[n]=1+Sum[Times@@j/@y,{y,Select[IntegerPartitions[n],Length[#]===2&]}];
    Array[j,40]
    (* Second program: *)
    a[n_] := a[n] = 1 + Sum[a[j]*a[n-j], {j, 1, n/2}];
    a /@ Range[0, 40] (* Jean-François Alcover, May 12 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=1, n\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018

Formula

a(n) = 1 + Sum_{x + y = n, 0 < x <= y < n} a(x) * a(y).

A336134 Number of ways to split an integer partition of n into contiguous subsequences with strictly increasing sums.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 17, 27, 37, 62, 82, 125, 168, 246, 320, 462, 585, 839, 1078, 1466, 1830, 2528, 3136, 4188, 5210, 6907, 8498, 11177, 13570, 17668, 21614, 27580, 33339, 42817, 51469, 65083, 78457, 98409, 117602, 147106, 174663, 217400, 259318, 319076, 377707
Offset: 0

Views

Author

Gus Wiseman, Jul 11 2020

Keywords

Examples

			The a(1) = 1 through a(6) = 17 splits:
  (1)  (2)    (3)        (4)          (5)            (6)
       (1,1)  (2,1)      (2,2)        (3,2)          (3,3)
              (1,1,1)    (3,1)        (4,1)          (4,2)
              (1),(1,1)  (2,1,1)      (2,2,1)        (5,1)
                         (1,1,1,1)    (3,1,1)        (2,2,2)
                         (1),(1,1,1)  (2,1,1,1)      (3,2,1)
                                      (2),(2,1)      (4,1,1)
                                      (1,1,1,1,1)    (2,2,1,1)
                                      (2),(1,1,1)    (2),(2,2)
                                      (1),(1,1,1,1)  (3,1,1,1)
                                      (1,1),(1,1,1)  (2,1,1,1,1)
                                                     (2),(2,1,1)
                                                     (1,1,1,1,1,1)
                                                     (2),(1,1,1,1)
                                                     (1),(1,1,1,1,1)
                                                     (1,1),(1,1,1,1)
                                                     (1),(1,1),(1,1,1)
		

Crossrefs

The version with equal sums is A317715.
The version with strictly decreasing sums is A336135.
The version with weakly decreasing sums is A316245.
The version with different sums is A336131.
Starting with a composition gives A304961.
Starting with a strict partition gives A336133.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.

Programs

  • Mathematica
    splits[dom_]:=Append[Join@@Table[Prepend[#,Take[dom,i]]&/@splits[Drop[dom,i]],{i,Length[dom]-1}],{dom}];
    Table[Sum[Length[Select[splits[ctn],Less@@Total/@#&]],{ctn,IntegerPartitions[n]}],{n,0,10}]
  • PARI
    a(n)={my(recurse(r,m,s,t,f)=if(m==0, r==0, if(f && r > t && t >= s, self()(r,m,t+1,0,0)) + self()(r,m-1,s,t,0) + self()(r-m,min(m,r-m), s,t+m,1))); recurse(n,n,0,0,0)} \\ Andrew Howroyd, Jan 18 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 18 2024

A336139 Number of ways to choose a strict composition of each part of a strict composition of n.

Original entry on oeis.org

1, 1, 1, 5, 9, 17, 45, 81, 181, 397, 965, 1729, 3673, 7313, 15401, 34065, 68617, 135069, 266701, 556969, 1061921, 2434385, 4436157, 9120869, 17811665, 35651301, 68949549, 136796317, 283612973, 537616261, 1039994921, 2081261717, 3980842425, 7723253181, 15027216049
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 17 splittings:
  (1)  (2)  (3)      (4)        (5)
            (1,2)    (1,3)      (1,4)
            (2,1)    (3,1)      (2,3)
            (1),(2)  (1),(3)    (3,2)
            (2),(1)  (3),(1)    (4,1)
                     (1),(1,2)  (1),(4)
                     (1),(2,1)  (2),(3)
                     (1,2),(1)  (3),(2)
                     (2,1),(1)  (4),(1)
                                (1),(1,3)
                                (1,2),(2)
                                (1),(3,1)
                                (1,3),(1)
                                (2),(1,2)
                                (2,1),(2)
                                (2),(2,1)
                                (3,1),(1)
		

Crossrefs

The version for partitions is A063834.
Row sums of A072574.
The version for non-strict compositions is A133494.
The version for strict partitions is A279785.
Multiset partitions of partitions are A001970.
Strict compositions are A032020.
Taking a composition of each part of a partition: A075900.
Taking a composition of each part of a strict partition: A304961.
Taking a strict composition of each part of a composition: A307068.
Splittings of partitions are A323583.
Compositions of parts of strict compositions are A336127.
Set partitions of strict compositions are A336140.

Programs

  • Mathematica
    strs[n_]:=Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&];
    Table[Length[Join@@Table[Tuples[strs/@ctn],{ctn,strs[n]}]],{n,0,15}]
Previous Showing 81-90 of 244 results. Next