A109347
Zsigmondy numbers for a = 5, b = 3: Zs(n, 5, 3) is the greatest divisor of 5^n - 3^n (A005058) that is relatively prime to 5^m - 3^m for all positive integers m < n.
Original entry on oeis.org
2, 1, 49, 17, 1441, 19, 37969, 353, 19729, 421, 24325489, 481, 609554401, 10039, 216001, 198593, 381405156481, 12979, 9536162033329, 288961, 18306583, 6125659, 5960417405949649, 346561, 103408180634401, 152787181, 3853528045489, 179655841, 93132223146359169121
Offset: 1
-
rad(n) = factorback(factor(n)[, 1])
lista(nn) = {prad = 1; for (n=1, nn, val = 5^n-3^n; d = divisors(val); gd = 1; forstep(k=#d, 1, -1, if (gcd(d[k], prad) == 1, g = d[k]; break)); print1(g, ", "); prad = ra(prad*val););} \\ Michel Marcus, Nov 15 2016
A144755
Primes which divide none of overpseudoprimes to base 2 (A141232).
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 31, 41, 43, 73, 127, 151, 241, 257, 331, 337, 683, 2731, 5419, 8191, 43691, 61681, 65537, 87211, 131071, 174763, 262657, 524287, 599479, 2796203, 15790321, 18837001, 22366891, 715827883, 2147483647, 4278255361
Offset: 1
Overpseudoprimes to base 2 are odd, then a(1)=2.
-
b=2; t={}; Do[c=Cyclotomic[n,b]; q=c/GCD[n,c]; If[PrimePowerQ[q], p=FactorInteger[q][[1,1]]; If[p<10^12, AppendTo[t,p]; Print[{n,p}]]], {n,1000}]; t=Sort[t] (* T. D. Noe, Apr 13 2010 *)
-
{ is_a144755(p) = my(q,m,g); q=znorder(Mod(2,p)); m=2^q-1; fordiv(q,d, if(d1,m\=g))); m==p; } \\ Max Alekseyev, Feb 10 2024
A161508
Numbers k such that 2^k-1 has only one primitive prime factor.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 30, 31, 32, 33, 34, 38, 40, 42, 46, 49, 54, 56, 61, 62, 65, 69, 77, 78, 80, 85, 86, 89, 90, 93, 98, 107, 120, 122, 126, 127, 129, 133, 145, 147, 150, 158, 165, 170, 174, 184, 192, 195, 202, 208
Offset: 1
-
Select[Range[1000], PrimePowerQ[Cyclotomic[ #,2]/GCD[Cyclotomic[ #,2],# ]]&]
-
is_A161508(n) = my(t=polcyclo(n,2)); isprimepower(t/gcd(t,n)); \\ Charles R Greathouse IV, Nov 17 2014
A064082
Zsigmondy numbers for a = 6, b = 1: Zs(n, 6, 1) is the greatest divisor of 6^n - 1^n (A024062) that is relatively prime to 6^m - 1^m for all positive integers m < n.
Original entry on oeis.org
5, 7, 43, 37, 311, 31, 55987, 1297, 46873, 1111, 72559411, 1261, 2612138803, 5713, 1406371, 1679617, 3385331888947, 46441, 121871948002099, 1634221, 1822428931, 51828151, 157946044610720563, 1678321, 731325737104301
Offset: 1
A093106
Numbers k such that the k-th cyclotomic polynomial evaluated at 2 (=A019320(k)) is not coprime to k.
Original entry on oeis.org
6, 18, 20, 21, 54, 100, 110, 136, 147, 155, 156, 162, 253, 342, 486, 500, 602, 657, 812, 820, 889, 979, 1029, 1081, 1210, 1332, 1458, 2028, 2265, 2312, 2485, 2500, 2756, 3081, 3164, 3422, 3660, 3924, 4112, 4374, 4422, 4656, 4805, 5253, 5784, 5819, 6498
Offset: 1
-
Select[Range[10000],GCD[#,Cyclotomic[#,2]]!=1 &] (* Emmanuel Vantieghem, Nov 13 2016 *)
-
isok(k) = gcd(polcyclo(k, 2), k) != 1; \\ Michel Marcus, Oct 07 2017
-
upto(K)=li=List();forprime(p=3,K*log(2)/log(K+1),r=znorder(Mod(2,p))*p;while(r<=K,listput(li,r);r*=p));Set(li) \\ Jeppe Stig Nielsen, Sep 10 2020
A097406
Largest primitive prime factor of 2^n-1, or a(n) = 1 if no such prime exists.
Original entry on oeis.org
1, 3, 7, 5, 31, 1, 127, 17, 73, 11, 89, 13, 8191, 43, 151, 257, 131071, 19, 524287, 41, 337, 683, 178481, 241, 1801, 2731, 262657, 113, 2089, 331, 2147483647, 65537, 599479, 43691, 122921, 109, 616318177, 174763, 121369, 61681, 164511353, 5419
Offset: 1
For the smallest primitive prime factor of 2^n-1 see
A112927.
-
isprimitive(p, n) = {for (r=1, n-1, if (((2^r-1) % p) == 0, return (0));); return (1);}
a(n) = {f = factor(2^n-1); forstep(i=#f~, 1, -1, if (isprimitive(f[i, 1], n), return (f[i, 1]));); return (1);} \\ Michel Marcus, Jul 15 2013
a(1) and a(6) changed from 0 to 1 by
Jianing Song, Oct 23 2019
A109325
Zsigmondy numbers for a = 3, b = 2: Zs(n, 3, 2) is the greatest divisor of 3^n - 2^n (A001047) that is relatively prime to 3^m - 2^m for all positive integers m < n.
Original entry on oeis.org
1, 5, 19, 13, 211, 7, 2059, 97, 1009, 11, 175099, 61, 1586131, 463, 3571, 6817, 129009091, 577, 1161737179, 4621, 267331, 35839, 94134790219, 5521, 4015426801, 320503, 397760329, 369181, 68629840493971, 7471, 617671248800299, 43112257
Offset: 1
Let n be 7; then the factorization of g(n) := 3^n-2^n is then g(7) = A(7) = 2059 since n is prime; let n be 3 then the factorization of g(3) = A(3) = 19 since n is prime; let n be 21, then the factorization is g(21) = A(3)*A(7)*A(21); and whether n is composite or not, with each n (at least) one new factor occurs besides the factors determined by the prime factors of n - so it is not purely multiplicative.
- N. Bliss, B. Fulan, S. Lovett, and J. Sommars, Strong Divisibility, Cyclotomic Polynomials, and Iterated Polynomials, Amer. Math. Monthly, 120 (2013), 519-536.
- Eric Weisstein's World of Mathematics, Zsigmondy's Theorem
-
f:=proc(a,M) local n,b,d,t1,t2;
b:=[];
for n from 1 to M do
t1:=divisors(n);
t2:=mul(a[d]^mobius(n/d), d in t1);
b:=[op(b),t2];
od;
b;
end; a:=[seq(3^n-2^n,n=1..50)];
f(a,50); # N. J. A. Sloane, Jun 07 2013
A109348
Zsigmondy numbers for a = 7, b = 3: Zs(n, 7, 3) is the greatest divisor of 7^n - 3^n that is relatively prime to 7^m - 3^m for all positive integers m < n.
Original entry on oeis.org
4, 5, 79, 29, 4141, 37, 205339, 1241, 127639, 341, 494287399, 2041, 24221854021, 82573, 3628081, 2885681, 58157596211761, 109117, 2849723505777919, 4871281, 8607961321, 197750389, 6842186811484434379, 5576881, 80962848274370701
Offset: 1
A109349
Zsigmondy numbers for a = 7, b = 5: Zs(n, 7, 5) is the greatest divisor of 7^n - 5^n that is relatively prime to 7^m - 5^m for all positive integers m < n.
Original entry on oeis.org
2, 3, 109, 37, 6841, 13, 372709, 1513, 176149, 1661, 964249309, 1801, 47834153641, 75139, 3162961, 3077713, 115933787267041, 30133, 5689910849522509, 3949201, 6868494361, 168846239, 13678413205562919109, 4654801, 97995219736887001
Offset: 1
A323748
Square array read by ascending antidiagonals: the n-th row lists the Zsigmondy numbers for a = n, b = 1, that is, T(n,k) = Zs(k, n, 1) is the greatest divisor of n^k - 1 that is coprime to n^m - 1 for all positive integers m < k, with n >= 2, k >= 1.
Original entry on oeis.org
1, 2, 3, 3, 1, 7, 4, 5, 13, 5, 5, 3, 7, 5, 31, 6, 7, 31, 17, 121, 1, 7, 1, 43, 13, 341, 7, 127, 8, 9, 19, 37, 781, 13, 1093, 17, 9, 5, 73, 25, 311, 7, 5461, 41, 73, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 3, 37, 41, 4681, 43, 55987, 313, 1387, 61, 2047, 12, 13, 133, 101, 7381, 19, 137257, 1297, 15751, 41, 88573, 13
Offset: 2
In the following list, "*" identifies a prime power.
Table begins
n\k | 1 2 3 4 5 6 7 8
2 | 1 , 3*, 7*, 5*, 31*, 1 , 127*, 17*
3 | 2*, 1 , 13*, 5*, 121*, 7*, 1093*, 41*
4 | 3*, 5*, 7*, 17*, 341 , 13*, 5461 , 257*
5 | 4*, 3*, 31*, 13*, 781 , 7*, 19531*, 313*
6 | 5*, 7*, 43*, 37*, 311*, 31*, 55987*, 1297*
7 | 6 , 1 , 19*, 25*, 2801*, 43*, 137257 , 1201*
8 | 7*, 9*, 73*, 65 , 4681 , 19*, 42799 , 4097
9 | 8*, 5*, 91 , 41*, 7381 , 73*, 597871 , 3281
10 | 9*, 11*, 37*, 101*, 11111 , 91 , 1111111 , 10001
11 | 10 , 3*, 133 , 61*, 3221*, 37*, 1948717 , 7321*
12 | 11*, 13*, 157*, 145 , 22621*, 133 , 3257437 , 20737
The first few columns:
T(n,1) = n - 1;
T(n,2) = A000265(n+1);
T(n,3) = (n^2 + n + 1)/3 if n == 1 (mod 3), n^2 + n + 1 otherwise;
T(n,4) = (n^2 + 1)/2 if n == 1 (mod 2), n^2 + 1 otherwise;
T(n,5) = (n^4 + n^3 + n^2 + n + 1)/5 if n == 1 (mod 5), n^4 + n^3 + n^2 + n + 1 otherwise;
T(n,6) = (n^2 - n + 1)/3 if n == 2 (mod 3), n^2 - n + 1 otherwise;
T(n,7) = (n^6 + n^5 + ... + 1)/7 if n == 1 (mod 7), n^6 + n^5 + ... + 1 otherwise;
T(n,8) = (n^4 + 1)/2 if n == 1 (mod 2), n^4 + 1 otherwise;
T(n,9) = (n^6 + n^3 + 1)/3 if n == 1 (mod 3), n^6 + n^3 + 1 otherwise;
T(n,10) = (n^4 - n^3 + n^2 - n + 1)/5 if n == 4 (mod 5), n^4 - n^3 + n^2 - n + 1 otherwise;
T(n,11) = (n^10 + n^9 + ... + 1)/11 if n == 1 (mod 11), n^10 + n^9 + ... + 1 otherwise;
T(n,12) = n^4 - n^2 + 1 (12 is not of the form p^e*d for any prime p, exponent e >= 1 and d dividing p-1).
-
Table[Function[n, SelectFirst[Reverse@ Divisors[n^k - 1], Function[m, AllTrue[n^Range[k - 1] - 1, GCD[#, m] == 1 &]]]][j - k + 2], {j, 12}, {k, j}] // Flatten (* or *)
Table[Function[n, If[k == 2, #/2^IntegerExponent[#, 2] &[n + 1], #/GCD[#, k] &@ Cyclotomic[k, n]]][j - k + 1], {j, 2, 13}, {k, j - 1}] // Flatten (* Michael De Vlieger, Feb 02 2019 *)
-
T(n,k) = if(k==2, (n+1)>>valuation(n+1, 2), my(m = polcyclo(k, n)); m/gcd(m, k))
Comments