cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A109347 Zsigmondy numbers for a = 5, b = 3: Zs(n, 5, 3) is the greatest divisor of 5^n - 3^n (A005058) that is relatively prime to 5^m - 3^m for all positive integers m < n.

Original entry on oeis.org

2, 1, 49, 17, 1441, 19, 37969, 353, 19729, 421, 24325489, 481, 609554401, 10039, 216001, 198593, 381405156481, 12979, 9536162033329, 288961, 18306583, 6125659, 5960417405949649, 346561, 103408180634401, 152787181, 3853528045489, 179655841, 93132223146359169121
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2005

Keywords

Crossrefs

Programs

  • PARI
    rad(n) = factorback(factor(n)[, 1])
    lista(nn) = {prad = 1; for (n=1, nn, val = 5^n-3^n; d = divisors(val); gd = 1; forstep(k=#d, 1, -1, if (gcd(d[k], prad) == 1, g = d[k]; break)); print1(g, ", "); prad = ra(prad*val););} \\ Michel Marcus, Nov 15 2016

Extensions

Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009
More terms from Michel Marcus, Nov 14 2016

A144755 Primes which divide none of overpseudoprimes to base 2 (A141232).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 31, 41, 43, 73, 127, 151, 241, 257, 331, 337, 683, 2731, 5419, 8191, 43691, 61681, 65537, 87211, 131071, 174763, 262657, 524287, 599479, 2796203, 15790321, 18837001, 22366891, 715827883, 2147483647, 4278255361
Offset: 1

Views

Author

Vladimir Shevelev, Sep 20 2008

Keywords

Comments

Odd prime p is in the sequence iff A064078(A002326((p-1)/2))=p. For example, for p=127 we have A002326((127-1)/2)=7 and A064078(7)=127. Thus p=127 is in the sequence.
Primes p such that the binary expansion of 1/p has a unique period length; that is, no other prime has the same period. Sequence A161509 sorted. - T. D. Noe, Apr 13 2010
Since A161509 has terms of varying magnitude, sorting any finite initial segment of A161509 cannot provide a guarantee that there are no other terms missed in between. Any prime p not (yet) appearing in A161509 should be tested via A064078(A002326((p-1)/2))=p to conclude whether it belongs to the current sequence. - Max Alekseyev, Feb 10 2024

Examples

			Overpseudoprimes to base 2 are odd, then a(1)=2.
		

Crossrefs

Cf. A040017 (unique-period primes in base 10). - T. D. Noe, Apr 13 2010

Programs

  • Mathematica
    b=2; t={}; Do[c=Cyclotomic[n,b]; q=c/GCD[n,c]; If[PrimePowerQ[q], p=FactorInteger[q][[1,1]]; If[p<10^12, AppendTo[t,p]; Print[{n,p}]]], {n,1000}]; t=Sort[t] (* T. D. Noe, Apr 13 2010 *)
  • PARI
    { is_a144755(p) = my(q,m,g); q=znorder(Mod(2,p)); m=2^q-1; fordiv(q,d, if(d1,m\=g))); m==p; } \\ Max Alekseyev, Feb 10 2024

Extensions

Extended by T. D. Noe, Apr 13 2010
b-file deleted by Max Alekseyev, Feb 10 2024.

A161508 Numbers k such that 2^k-1 has only one primitive prime factor.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 30, 31, 32, 33, 34, 38, 40, 42, 46, 49, 54, 56, 61, 62, 65, 69, 77, 78, 80, 85, 86, 89, 90, 93, 98, 107, 120, 122, 126, 127, 129, 133, 145, 147, 150, 158, 165, 170, 174, 184, 192, 195, 202, 208
Offset: 1

Views

Author

T. D. Noe, Jun 17 2009

Keywords

Comments

Also, numbers k such that A086251(k) = 1.
Also, numbers k such that A064078(k) is a prime power.
The corresponding primitive primes are listed in A161509.
The binary expansion of 1/p has period k and this is the only prime with such a period. The binary analog of A007498.
This sequence has many terms in common with A072226. A072226 has the additional term 6; but it does not have terms 18, 20, 21, 54, 147, 342, 602, and 889 (less than 10000).
All known terms that are not in A072226 belong to A333973.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimePowerQ[Cyclotomic[ #,2]/GCD[Cyclotomic[ #,2],# ]]&]
  • PARI
    is_A161508(n) = my(t=polcyclo(n,2)); isprimepower(t/gcd(t,n)); \\ Charles R Greathouse IV, Nov 17 2014

A064082 Zsigmondy numbers for a = 6, b = 1: Zs(n, 6, 1) is the greatest divisor of 6^n - 1^n (A024062) that is relatively prime to 6^m - 1^m for all positive integers m < n.

Original entry on oeis.org

5, 7, 43, 37, 311, 31, 55987, 1297, 46873, 1111, 72559411, 1261, 2612138803, 5713, 1406371, 1679617, 3385331888947, 46441, 121871948002099, 1634221, 1822428931, 51828151, 157946044610720563, 1678321, 731325737104301
Offset: 1

Views

Author

Jens Voß, Sep 04 2001

Keywords

Comments

By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.

Crossrefs

Extensions

More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009

A093106 Numbers k such that the k-th cyclotomic polynomial evaluated at 2 (=A019320(k)) is not coprime to k.

Original entry on oeis.org

6, 18, 20, 21, 54, 100, 110, 136, 147, 155, 156, 162, 253, 342, 486, 500, 602, 657, 812, 820, 889, 979, 1029, 1081, 1210, 1332, 1458, 2028, 2265, 2312, 2485, 2500, 2756, 3081, 3164, 3422, 3660, 3924, 4112, 4374, 4422, 4656, 4805, 5253, 5784, 5819, 6498
Offset: 1

Views

Author

Ralf Stephan, Mar 20 2004

Keywords

Comments

Also, numbers k such that the Zsigmondy number Zs(k, 2, 1) differs from the k-th cyclotomic polynomial evaluated at 2, i.e., A064078(k) differs from A019320(k).
Numbers k > 0 such that A019320(k) is not congruent to 1 mod k. These numbers are of the form k = p^j * A002326((p-1)/2), where p is an odd prime and j > 0. Then A019320(k) mod k = gcd(A019320(k), k) = A019320(k) / A064078(k) = p. - Thomas Ordowski, Oct 07 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],GCD[#,Cyclotomic[#,2]]!=1 &] (* Emmanuel Vantieghem, Nov 13 2016 *)
  • PARI
    isok(k) = gcd(polcyclo(k, 2), k) != 1; \\ Michel Marcus, Oct 07 2017
    
  • PARI
    upto(K)=li=List();forprime(p=3,K*log(2)/log(K+1),r=znorder(Mod(2,p))*p;while(r<=K,listput(li,r);r*=p));Set(li) \\ Jeppe Stig Nielsen, Sep 10 2020

Extensions

More terms from Vladeta Jovovic, Apr 03 2004
Definition corrected by Jerry Metzger, Nov 04 2009
Edited by Max Alekseyev, Oct 23 2017

A097406 Largest primitive prime factor of 2^n-1, or a(n) = 1 if no such prime exists.

Original entry on oeis.org

1, 3, 7, 5, 31, 1, 127, 17, 73, 11, 89, 13, 8191, 43, 151, 257, 131071, 19, 524287, 41, 337, 683, 178481, 241, 1801, 2731, 262657, 113, 2089, 331, 2147483647, 65537, 599479, 43691, 122921, 109, 616318177, 174763, 121369, 61681, 164511353, 5419
Offset: 1

Views

Author

Marco Matosic, Aug 16 2004

Keywords

Comments

By Zsigmondy's theorem, a(n) > 1 except for n = 1 or 6.
Conjectures: (1) For every n the highest unique prime factor is of the form kn+1. The values for k are in A097407. (2) For each composite n many factors of the form kn+1 occur intermittently but always singly in any cofactor pair. (3) For each prime n every factor is of the form kn+1.
A prime factor of 2^n-1 is called primitive if it does not divide 2^r-1 for any rA086251.
a(n) is the greatest prime such that the multiplicative order of 2 mod a(n) equals n, or a(n)=1 if no such prime exists. - Jianing Song, Oct 23 2019

Crossrefs

For the smallest primitive prime factor of 2^n-1 see A112927.

Programs

  • PARI
    isprimitive(p, n) = {for (r=1, n-1, if (((2^r-1) % p) == 0, return (0));); return (1);}
    a(n) = {f = factor(2^n-1); forstep(i=#f~, 1, -1, if (isprimitive(f[i, 1], n), return (f[i, 1]));); return (1);} \\ Michel Marcus, Jul 15 2013

Formula

a(n) = A006530(A064078(n)). - Jianing Song, Oct 23 2019

Extensions

More terms and better description from Vladeta Jovovic, Sep 03 2004
a(1) and a(6) changed from 0 to 1 by Jianing Song, Oct 23 2019

A109325 Zsigmondy numbers for a = 3, b = 2: Zs(n, 3, 2) is the greatest divisor of 3^n - 2^n (A001047) that is relatively prime to 3^m - 2^m for all positive integers m < n.

Original entry on oeis.org

1, 5, 19, 13, 211, 7, 2059, 97, 1009, 11, 175099, 61, 1586131, 463, 3571, 6817, 129009091, 577, 1161737179, 4621, 267331, 35839, 94134790219, 5521, 4015426801, 320503, 397760329, 369181, 68629840493971, 7471, 617671248800299, 43112257
Offset: 1

Views

Author

Gottfried Helms, Aug 09 2005

Keywords

Comments

The full factorization is multiplicative; meaning that the composition of factors is determined by the prime-factorization of n.

Examples

			Let n be 7; then the factorization of g(n) := 3^n-2^n is then g(7) = A(7) = 2059 since n is prime; let n be 3 then the factorization of g(3) = A(3) = 19 since n is prime; let n be 21, then the factorization is g(21) = A(3)*A(7)*A(21); and whether n is composite or not, with each n (at least) one new factor occurs besides the factors determined by the prime factors of n - so it is not purely multiplicative.
		

Crossrefs

Programs

  • Maple
    f:=proc(a,M) local n,b,d,t1,t2;
    b:=[];
    for n from 1 to M do
    t1:=divisors(n);
    t2:=mul(a[d]^mobius(n/d), d in t1);
    b:=[op(b),t2];
    od;
    b;
    end; a:=[seq(3^n-2^n,n=1..50)];
    f(a,50); #  N. J. A. Sloane, Jun 07 2013

Formula

a(n) = Product_{d|n} b(d)^Moebius(n/d), where b() = A001047(). - N. J. A. Sloane, Jun 07 2013

Extensions

Edited and extended by Ray Chandler, Aug 26 2005

A109348 Zsigmondy numbers for a = 7, b = 3: Zs(n, 7, 3) is the greatest divisor of 7^n - 3^n that is relatively prime to 7^m - 3^m for all positive integers m < n.

Original entry on oeis.org

4, 5, 79, 29, 4141, 37, 205339, 1241, 127639, 341, 494287399, 2041, 24221854021, 82573, 3628081, 2885681, 58157596211761, 109117, 2849723505777919, 4871281, 8607961321, 197750389, 6842186811484434379, 5576881, 80962848274370701
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2005

Keywords

Crossrefs

Extensions

Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009

A109349 Zsigmondy numbers for a = 7, b = 5: Zs(n, 7, 5) is the greatest divisor of 7^n - 5^n that is relatively prime to 7^m - 5^m for all positive integers m < n.

Original entry on oeis.org

2, 3, 109, 37, 6841, 13, 372709, 1513, 176149, 1661, 964249309, 1801, 47834153641, 75139, 3162961, 3077713, 115933787267041, 30133, 5689910849522509, 3949201, 6868494361, 168846239, 13678413205562919109, 4654801, 97995219736887001
Offset: 1

Views

Author

Jonathan Vos Post, Aug 21 2005

Keywords

Crossrefs

Extensions

Edited, corrected and extended by Ray Chandler, Aug 26 2005
Definition corrected by Jerry Metzger, Nov 04 2009

A323748 Square array read by ascending antidiagonals: the n-th row lists the Zsigmondy numbers for a = n, b = 1, that is, T(n,k) = Zs(k, n, 1) is the greatest divisor of n^k - 1 that is coprime to n^m - 1 for all positive integers m < k, with n >= 2, k >= 1.

Original entry on oeis.org

1, 2, 3, 3, 1, 7, 4, 5, 13, 5, 5, 3, 7, 5, 31, 6, 7, 31, 17, 121, 1, 7, 1, 43, 13, 341, 7, 127, 8, 9, 19, 37, 781, 13, 1093, 17, 9, 5, 73, 25, 311, 7, 5461, 41, 73, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 3, 37, 41, 4681, 43, 55987, 313, 1387, 61, 2047, 12, 13, 133, 101, 7381, 19, 137257, 1297, 15751, 41, 88573, 13
Offset: 2

Views

Author

Jianing Song, Jan 25 2019

Keywords

Comments

By Zsigmondy's theorem, T(n,k) = 1 if and only if n = 2 and k = 1 or 6, or n + 1 is a power of 2 and k = 2.
All prime factors of T(n,k) are congruent to 1 modulo k.
If T(n,k) = p^e where p is prime, then p is a unique-period prime in base n. By the property above, k must be a divisor of p - 1.
There are many squares of primes in the third, fourth or sixth column (e.g., T(7,4) = 25 = 5^2, T(22,3) = T(23,6) = 169 = 13^2, T(41,4) = 841 = 29^2, etc.). Conjecturally all other prime powers with exponent >= 2 in the table excluding the first two columns are T(3,5) = 121 = 11^2, T(18,3) = T(19,6) = 343 = 7^3 and T(239,4) = 28561 = 13^4.

Examples

			In the following list, "*" identifies a prime power.
Table begins
   n\k |  1    2     3     4       5     6         7       8
   2   |  1 ,  3*,   7*,   5*,    31*,   1 ,     127*,    17*
   3   |  2*,  1 ,  13*,   5*,   121*,   7*,    1093*,    41*
   4   |  3*,  5*,   7*,  17*,   341 ,  13*,    5461 ,   257*
   5   |  4*,  3*,  31*,  13*,   781 ,   7*,   19531*,   313*
   6   |  5*,  7*,  43*,  37*,   311*,  31*,   55987*,  1297*
   7   |  6 ,  1 ,  19*,  25*,  2801*,  43*,  137257 ,  1201*
   8   |  7*,  9*,  73*,  65 ,  4681 ,  19*,   42799 ,  4097
   9   |  8*,  5*,  91 ,  41*,  7381 ,  73*,  597871 ,  3281
  10   |  9*, 11*,  37*, 101*, 11111 ,  91 , 1111111 , 10001
  11   | 10 ,  3*, 133 ,  61*,  3221*,  37*, 1948717 ,  7321*
  12   | 11*, 13*, 157*, 145 , 22621*, 133 , 3257437 , 20737
The first few columns:
  T(n,1) = n - 1;
  T(n,2) = A000265(n+1);
  T(n,3) = (n^2 + n + 1)/3 if n == 1 (mod 3), n^2 + n + 1 otherwise;
  T(n,4) = (n^2 + 1)/2 if n == 1 (mod 2), n^2 + 1 otherwise;
  T(n,5) = (n^4 + n^3 + n^2 + n + 1)/5 if n == 1 (mod 5), n^4 + n^3 + n^2 + n + 1 otherwise;
  T(n,6) = (n^2 - n + 1)/3 if n == 2 (mod 3), n^2 - n + 1 otherwise;
  T(n,7) = (n^6 + n^5 + ... + 1)/7 if n == 1 (mod 7), n^6 + n^5 + ... + 1 otherwise;
  T(n,8) = (n^4 + 1)/2 if n == 1 (mod 2), n^4 + 1 otherwise;
  T(n,9) = (n^6 + n^3 + 1)/3 if n == 1 (mod 3), n^6 + n^3 + 1 otherwise;
  T(n,10) = (n^4 - n^3 + n^2 - n + 1)/5 if n == 4 (mod 5), n^4 - n^3 + n^2 - n + 1 otherwise;
  T(n,11) = (n^10 + n^9 + ... + 1)/11 if n == 1 (mod 11), n^10 + n^9 + ... + 1 otherwise;
  T(n,12) = n^4 - n^2 + 1 (12 is not of the form p^e*d for any prime p, exponent e >= 1 and d dividing p-1).
		

Crossrefs

Programs

  • Mathematica
    Table[Function[n, SelectFirst[Reverse@ Divisors[n^k - 1], Function[m, AllTrue[n^Range[k - 1] - 1, GCD[#, m] == 1 &]]]][j - k + 2], {j, 12}, {k, j}] // Flatten (* or *)
    Table[Function[n, If[k == 2, #/2^IntegerExponent[#, 2] &[n + 1], #/GCD[#, k] &@ Cyclotomic[k, n]]][j - k + 1], {j, 2, 13}, {k, j - 1}] // Flatten (* Michael De Vlieger, Feb 02 2019 *)
  • PARI
    T(n,k) = if(k==2, (n+1)>>valuation(n+1, 2), my(m = polcyclo(k, n)); m/gcd(m, k))

Formula

T(n,k) = A000265(n+1) if k = 2, otherwise T(n,k) = Phi_k(n)/gcd(Phi_k(n), k) = A253240(k,n)/gcd(A253240(k,n), k) where Phi_k is the k-th cyclotomic polynomial.
T(n,k) = A000265(n+1) if k = 2, Phi_k(n)/p if k = p^e*ord(n,p) != 2 for some prime p and exponent e >= 1, Phi_k(n) otherwise, where ord(n,p) is the multiplicative order of n modulo p.
T(n,k) = Phi_k(n)/A342255(n,k) for n >= 2, k != 2.

Extensions

Zs notation in Name changed by Jeppe Stig Nielsen, Oct 16 2020
Previous Showing 11-20 of 24 results. Next