cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 51 results. Next

A380988 Sorted positions of first appearances in A290106 (product of prime indices divided by product of distinct prime indices).

Original entry on oeis.org

1, 9, 25, 27, 81, 121, 125, 169, 243, 289, 625, 675, 729, 841, 961, 1125, 1331, 1681, 1849, 2025, 2187, 2197, 2209, 3125, 3267, 3481, 4489, 4913, 5329, 5625, 6075, 6241, 6561, 6889, 7803, 9801, 10125, 10201, 11881, 11979, 12769, 14641, 15125, 15625, 16129
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The prime indices of 225 are {2,2,3,3}, with image A290106(225) = 6. The prime indices of 169 are {6,6}, also with image 6. Since the latter is the first with image 6, 169 is in the sequence, and 225 is not.
The terms together with their prime indices begin:
     1: {}
     9: {2,2}
    25: {3,3}
    27: {2,2,2}
    81: {2,2,2,2}
   121: {5,5}
   125: {3,3,3}
   169: {6,6}
   243: {2,2,2,2,2}
   289: {7,7}
   625: {3,3,3,3}
   675: {2,2,2,3,3}
   729: {2,2,2,2,2,2}
   841: {10,10}
   961: {11,11}
  1125: {2,2,3,3,3}
  1331: {5,5,5}
  1681: {13,13}
  1849: {14,14}
  2025: {2,2,2,2,3,3}
		

Crossrefs

For factors instead of indices we have A001694 (unsorted A064549), firsts of A003557.
Sorted firsts of A290106.
The additive version is A380957 (sorted A380956), firsts of A380955.
For difference instead of quotient see A380986.
The unsorted version is A380987.
The additive version for factors is A381075 (unsorted A280286), firsts of A280292.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices, distinct A156061.
A005117 lists squarefree numbers, complement A013929.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, length A001222.
A304038 lists distinct prime indices, sum A066328, length A001221.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    q=Table[Times@@prix[n]/Times@@Union[prix[n]],{n,1000}];
    Select[Range[Length[q]],FreeQ[Take[q,#-1],q[[#]]]&]

A304409 If n = Product (p_j^k_j) then a(n) = Product (p_j*(k_j + 1)).

Original entry on oeis.org

1, 4, 6, 6, 10, 24, 14, 8, 9, 40, 22, 36, 26, 56, 60, 10, 34, 36, 38, 60, 84, 88, 46, 48, 15, 104, 12, 84, 58, 240, 62, 12, 132, 136, 140, 54, 74, 152, 156, 80, 82, 336, 86, 132, 90, 184, 94, 60, 21, 60, 204, 156, 106, 48, 220, 112, 228, 232, 118, 360, 122, 248, 126, 14, 260
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(12) = a(2^2*3) = 2*(2 + 1) * 3*(1 + 1) = 36.
		

Crossrefs

Cf. A000005, A000026, A000040, A001221, A005117, A007947, A016754 (numbers n such that a(n) is odd), A034444, A038040, A064549, A299822, A304407, A304408, A304410 (fixed points), A304411, A304412.

Programs

  • Mathematica
    a[n_] := Times @@ (#[[1]] (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 65}]
    Table[DivisorSigma[0, n] Last[Select[Divisors[n], SquareFreeQ]], {n, 65}]
  • PARI
    a(n)={numdiv(n)*factorback(factorint(n)[, 1])} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A000005(n)*A007947(n).
a(p^k) = p*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*n if n is a squarefree (A005117), where omega() = A001221.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 2/p^(s-1) - 2/p^s - 1/p^(2*s-1) + 1/p^(2*s)). - Amiram Eldar, Sep 17 2023
From Vaclav Kotesovec, Jun 06 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(2*s-1) + 2/p^(s-1) + 1/p^(2*s) - 2/p^s) * ((p^s - p)/(p^s - 1))^2.
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = Product_{p prime} (1 - (3*p^2 + p - 1)/(p^2 * (p+1)^2)) = 0.40693068229776748114138817391056656864938379...,
f'(2) = f(2) * Sum_{p prime} 2*(3*p^4-3*p^2+1) * log(p) / ((p-1)*(p+1)*(p^4+2*p^3-2*p^2-p+1)) = f(2) * 2.2612432627709318567813765271568350301741329636853...
and gamma is the Euler-Mascheroni constant A001620. (End)

A304412 If n = Product (p_j^k_j) then a(n) = Product ((p_j + 1)*(k_j + 1)).

Original entry on oeis.org

1, 6, 8, 9, 12, 48, 16, 12, 12, 72, 24, 72, 28, 96, 96, 15, 36, 72, 40, 108, 128, 144, 48, 96, 18, 168, 16, 144, 60, 576, 64, 18, 192, 216, 192, 108, 76, 240, 224, 144, 84, 768, 88, 216, 144, 288, 96, 120, 24, 108, 288, 252, 108, 96, 288, 192, 320, 360, 120, 864, 124, 384, 192, 21, 336, 1152, 136, 324
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(36) = a(2^2*3^2) = (2 + 1)*(2 + 1) * (3 + 1)*(2 + 1) = 108.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ ((#[[1]] + 1) (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 68}]
    Table[DivisorSigma[0, n] Total[Select[Divisors[n], SquareFreeQ]], {n, 68}]
  • PARI
    a(n)={numdiv(n)*sumdiv(n, d, moebius(d)^2*d)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A000005(n)*A048250(n) = A000005(n)*A000203(A007947(n)).
a(p^k) = (p + 1)*(k + 1) where p is a prime and k > 0.
a(n) = 2^omega(n)*Product_{p|n} (p + 1) if n is a squarefree (A005117), where omega() = A001221.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 2/p^(s-1) - 1/p^(2*s-1)). - Amiram Eldar, Sep 17 2023
From Vaclav Kotesovec, May 06 2025: (Start)
Let f(s) = Product_{p prime} (p^s-p)^2 * (p^(2*s)+2*p^(s+1)-p) / (p^(2*s) * (p^s-1)^2).
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = A065463 = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442200999165592736603350326637210188586431417098049414226842591...,
f'(2) = f(2) * Sum_{p prime} 2*(2*p^2-1)*log(p) / ((p^2-1)*(p^2+p-1)) = f(2) * 1.799151495460164053607059266860868724519705035904425832307664926571...
and gamma is the Euler-Mascheroni constant A001620. (End)

A357669 a(n) is the number of divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 4, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 4, 3, 1, 4, 3, 1, 1, 1, 6, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 08 2022

Keywords

Comments

The corresponding sum of divisors of the powerful part of n is A295294.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, e + 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(e = factor(n)[,2]); prod(i=1, #e, if(e[i] == 1, 1, e[i] + 1))};

Formula

a(n) = A000005(A057521(n)).
a(n) = A000005(n)/A056671(n).
a(n) = A000005(A064549(A003557(n))).
a(n) = 1 iff n is squarefree (A005117).
a(n) = A000005(n) iff n is powerful (A001694).
Multiplicative with a(p^e) = 1 if e = 1 and e+1 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} ((p^3 - p^2 + 2*p - 1)/(p^2*(p - 1))) = 2.71098009471568319328... .
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 2/p^(2*s) - 1/p^(3*s)). - Amiram Eldar, Sep 09 2023

A087687 Number of solutions to x^2 + y^2 + z^2 == 0 (mod n).

Original entry on oeis.org

1, 4, 9, 8, 25, 36, 49, 32, 99, 100, 121, 72, 169, 196, 225, 64, 289, 396, 361, 200, 441, 484, 529, 288, 725, 676, 891, 392, 841, 900, 961, 256, 1089, 1156, 1225, 792, 1369, 1444, 1521, 800, 1681, 1764, 1849, 968, 2475, 2116, 2209, 576, 2695, 2900, 2601
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 27 2003

Keywords

Comments

To show that a(n) is multiplicative is simple number theory. If gcd(n,m)=1, then any solution of x^2 + y^2 + z^2 == 0 (mod n) and any solution (mod m) can combined to a solution (mod nm) using the Chinese Remainder Theorem and any solution (mod nm) gives solutions (mod n) and (mod m). Hence a(nm) = a(n)*a(m). - Torleiv Kløve, Jan 26 2009

Crossrefs

Different from A064549.

Programs

  • Maple
    A087687 := proc(n)
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if p = 2 then
                a := a*p^(e+ceil(e/2)) ;
            elif type(e,'odd') then
                a := a*p^((3*e-1)/2)*(p^((e+1)/2)+p^((e-1)/2)-1) ;
            else
                a := a*p^(3*e/2-1)*(p^(e/2+1)+p^(e/2)-1) ;
            end if;
        end do:
        a ;
    end proc:
    seq(A087687(n),n=1..100) ; # R. J. Mathar, Jun 25 2018
  • Mathematica
    a[n_] := Module[{k=1}, Do[{p, e} = pe; k = k*If[p == 2, p^(e + Ceiling[ e/2]), If[OddQ[e], p^((3*e-1)/2)*(p^((e+1)/2) + p^((e-1)/2) - 1), p^(3*e/2 - 1)*(p^(e/2 + 1) + p^(e/2) - 1)]], {pe, FactorInteger[n]}]; k];
    Array[a, 100] (* Jean-François Alcover, Jul 10 2018, after R. J. Mathar *)
  • PARI
    a(n)=local(v=vector(n),w);for(i=1,n,v[i^2%n+1]++);w=vector(n,i,sum(j=1,n,v[j]*v[(i-j)%n+1]));sum(j=1,n,w[j]*v[(1-j)%n+1]) \\ Martin Fuller
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p==2, 2^(e+(e+1)\2), p^(e+(e-1)\2)*(p^(e\2)*(p+1) - 1)))} \\ Andrew Howroyd, Aug 06 2018

Formula

a(2^k) = 2^(k + ceiling(k/2)). For odd primes p, a(p^(2k-1)) = p^(3k-2)*(p^k + p^(k-1) - 1) and a(p^(2k)) = p^(3k-1)*(p^(k+1) + p^k - 1). - Martin Fuller, Jan 26 2009
Sum_{k=1..n} a(k) ~ (4*zeta(3))/(15*zeta(4)) * n^3 + O(n^2 * log(n)) (Calderón and de Velasco, 2000). - Amiram Eldar, Mar 04 2021

Extensions

More terms from Robert Gerbicz, Aug 22 2006
Edited by Steven Finch, Feb 06 2009, Feb 12 2009

A318474 Multiplicative with a(p^e) = 2^A000045(e+1).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 8, 4, 4, 2, 8, 2, 4, 4, 32, 2, 8, 2, 8, 4, 4, 2, 16, 4, 4, 8, 8, 2, 8, 2, 256, 4, 4, 4, 16, 2, 4, 4, 16, 2, 8, 2, 8, 8, 4, 2, 64, 4, 8, 4, 8, 2, 16, 4, 16, 4, 4, 2, 16, 2, 4, 8, 8192, 4, 8, 2, 8, 4, 8, 2, 32, 2, 4, 8, 8, 4, 8, 2, 64, 32, 4, 2, 16, 4, 4, 4, 16, 2, 16, 4, 8, 4, 4, 4, 512, 2, 8, 8, 16, 2, 8, 2, 16, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Apply[Times, 2^Fibonacci[# + 1] & /@ FactorInteger[#][[All, -1]]] - Boole[# == 1] &, 105] (* Michael De Vlieger, Sep 02 2018 *)
  • PARI
    A318474(n) = factorback(apply(e -> 2^fibonacci(1+e),factor(n)[,2]));

Formula

a(n) = 2^A318473(n).
a(n) = A318472(A064549(n)).
a(A064549(n)) = a(n)*A318472(n).

A318655 The 2-adic valuation of A318649, the numerators of "Dirichlet Square Root" of squares.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2018

Keywords

Comments

Probably also the 2-adic valuation of A318511.

Crossrefs

Cf. A318511, A318649, A318651, A318652, A318654 (the positions of nonzero terms).

Programs

Formula

a(n) = A007814(A318649(n)).
It seems that for all n >= 1, a(n) <= A007814(A064549(n)) <= A007814(A000290(n)).

A306458 a(n) = A001694(n)/A007947(A001694(n)), the powerful numbers divided by their squarefree kernel.

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 9, 16, 6, 7, 32, 12, 27, 10, 18, 11, 25, 64, 24, 13, 14, 20, 36, 15, 81, 128, 48, 17, 54, 49, 19, 28, 40, 72, 21, 22, 50, 256, 23, 96, 125, 108, 45, 26, 243, 56, 80, 29, 144, 30, 31, 44, 162, 100, 512, 33, 75, 192, 34, 35, 216, 63, 121, 52
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2019

Keywords

Comments

A permutation of the positive integers.

Crossrefs

Programs

  • Maple
    N:= 10^4: # to get terms corresponding to powerful numbers <= N
    rad:= n -> convert(numtheory:-factorset(n), `*`):
    S:= {1}:
    p:= 1:
    do
      p:= nextprime(p);
      if p^2 > N then break fi;
      S:= S union map(t -> seq(t*p^i,i=2..floor(log[p](N/t))),select(`<=`,S,N/p^2));
    od:
    map(t -> t/rad(t), sort(convert(S,list))); # Robert Israel, Mar 20 2019
  • Mathematica
    p=Join[{1}, Select[ Range@ 12500, Min@ FactorInteger[#][[All, 2]] > 1 &]]; rad[n_] := Times @@ (First@# & /@ FactorInteger@ n);  p/(rad/@p) (* after Harvey P. Dale at A001694 and Robert G. Wilson v at A007947 *)
  • PARI
    apply(x->(x/factorback(factorint(x)[, 1])), select(x->ispowerful(x), vector(1600, k, k))) \\ Michel Marcus, Feb 17 2019
    
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A306458(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return (m:=bisection(f,n,n))//prod(primefactors(m)) # Chai Wah Wu, Sep 14 2024

Formula

A064549(a(n)) = A001694(n).

A318680 a(n) = n * A318653(n).

Original entry on oeis.org

1, 2, 9, 4, 25, 18, 49, 8, 27, 50, 121, 36, 169, 98, 225, 48, 289, 54, 361, 100, 441, 242, 529, 72, -125, 338, 405, 196, 841, 450, 961, 96, 1089, 578, 1225, 108, 1369, 722, 1521, 200, 1681, 882, 1849, 484, 675, 1058, 2209, 432, -1029, -250, 2601, 676, 2809, 810, 3025, 392, 3249, 1682, 3481, 900, 3721, 1922, 1323, 320
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2018

Keywords

Comments

Dirichlet convolution of a(n)/A299150(n) with itself gives A064549 [= n * Product_{primes p|n} p], like gives also the self-convolution of A318511(n)/A318512(n), as it is the same ratio reduced to its lowest terms. However, in contrast to A318511, this sequence is multiplicative as both A000027 and A318653 are multiplicative sequences (also, because A064549 and A299150 are both multiplicative).
A007814 gives the 2-adic valuation of this sequence, because there are no even terms in A318653.

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); f[1] = 1; f[n_] := f[n] = (rad[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; a[n_] := n * Numerator [f[n]]; Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    up_to = 65537;
    A007947(n) = factorback(factorint(n)[, 1]);
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA007947(n)));
    A318653(n) = numerator(v318653_aux[n]);
    A318680(n) = (n*A318653(n));

Formula

a(n) = n * A318653(n).
a(n)/A299150(n) = A318511(n)/A318512(n).

A355038 a(n) = n^2 times the squarefree kernel of n.

Original entry on oeis.org

1, 8, 27, 32, 125, 216, 343, 128, 243, 1000, 1331, 864, 2197, 2744, 3375, 512, 4913, 1944, 6859, 4000, 9261, 10648, 12167, 3456, 3125, 17576, 2187, 10976, 24389, 27000, 29791, 2048, 35937, 39304, 42875, 7776, 50653, 54872, 59319, 16000, 68921, 74088, 79507, 42592, 30375
Offset: 1

Views

Author

Peter Munn, Jun 16 2022

Keywords

Crossrefs

The range of values is A335988.

Programs

  • Mathematica
    a[n_] := n^2 * Times @@ FactorInteger[n][[;; , 1]]; Array[a, 50] (* Amiram Eldar, Jun 18 2022 *)
  • PARI
    a(n) = n^2 * factorback(factor(n)[,1]);

Formula

Multiplicative with a(p^e) = p^(2e+1).
a(n) = n^2 * A007947(n).
a(n) = A064549(n^2). - Amiram Eldar, Jun 20 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = (1/4) * Product_{p prime} (1 - 1/(p*(p+1))) = A065463 / 4 = 0.1761105502... . - Amiram Eldar, Nov 13 2022
a(n) = A356191(n^2). - Amiram Eldar, Nov 30 2023
Previous Showing 21-30 of 51 results. Next