cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A265102 a(n) = binomial(8*n + 6, 4*n + 1)/(8*n + 6).

Original entry on oeis.org

1, 143, 22610, 3991995, 757398510, 150946230006, 31170212479588, 6611198199648595, 1431806849011462742, 315319074704135127010, 70398290295706497441660, 15897587681946817926283230, 3624898901185998294920196300, 833406923656808938891174678092
Offset: 0

Views

Author

Peter Bala, Dec 02 2015

Keywords

Comments

Let x = p/q be a positive rational in reduced form with p,q > 0. Define Cat(x) = 1/(2*p + q)*binomial(2*p + q, p). Then Cat(n) = Catalan(n). This sequence is Cat(n + 1/4).
Number of maximal faces of the rational associahedron Ass(4*n + 1, 4*n + 5). Number of lattice paths from (0, 0) to (4*n + 5, 4*n + 1) using steps of the form (1, 0) and (0, 1) and staying above the line y = (4*n + 1)/(4*n + 5)*x. See Armstrong et al.

Crossrefs

Row 4 of A306444.
Cf. A000108, A065097 (Cat(n + 1/2)), A265101 (Cat(n + 1/3)), A265103 (Cat(n + 1/5)).

Programs

  • Magma
    [Binomial(8*n+6, 4*n+1)/(8*n+6): n in [0..20]]; // G. C. Greubel, Feb 16 2019
    
  • Maple
    seq(binomial(8*n + 6, 4*n + 1)/(8*n + 6), n = 0..14);
  • Mathematica
    Table[Binomial[8n+6, 4n+1]/(8n+6), {n, 0, 20}] (* Vincenzo Librandi, Dec 09 2015 *)
  • PARI
    a(n) = binomial(8*n + 6, 4*n + 1)/(8*n + 6); \\ Altug Alkan, Dec 07 2015
    
  • Sage
    [binomial(8*n+6, 4*n+1)/(8*n+6) for n in (0..20)] # G. C. Greubel, Feb 16 2019

Formula

a(n) = binomial(8*n + 6, 4*n + 1)/(8*n + 6).
(n + 1)*(2*n - 1)*(4*n + 3)*(4*n + 5)*a(n) = 2*(8*n + 1)*(8*n - 1)*(8*n + 3)*(8*n + 5)*a(n-1) with a(0) = 1.
From Ilya Gutkovskiy, Feb 28 2017: (Start)
O.g.f.: (4F3(-1/8,1/8,3/8,5/8; -1/2,3/4,5/4; 256*x) - 1)/(2*x).
E.g.f.: 4F4(7/8,9/8,11/8,13/8; 1/2,7/4,2,9/4; 256*x).
a(n) ~ 4^(4*n+1)/(sqrt(Pi)*n^(3/2)). (End)

A265103 a(n) = binomial(10*n + 7, 5*n + 1)/(10*n + 7).

Original entry on oeis.org

1, 728, 482885, 347993910, 267058714626, 214401560777712, 177957899774070416, 151516957974714281810, 131614194900668669130060, 116186564091895720987588128, 103938666796148178180041038716, 94020887900502277905668153549928, 85855382816448334044679630209920925
Offset: 0

Views

Author

Peter Bala, Dec 02 2015

Keywords

Comments

Let x = p/q be a positive rational in reduced form with p,q > 0. Define Cat(x) = 1/(2*p + q)*binomial(2*p + q, p). Then Cat(n) = Catalan(n). This sequence is Cat(n + 1/5).
Number of maximal faces of the rational associahedron Ass(5*n + 1, 5*n + 6). Number of lattice paths from (0, 0) to (5*n + 6, 5*n + 1) using steps of the form (1, 0) and (0, 1) and staying above the line y = (5*n + 1)/(5*n + 6)*x. See Armstrong et al.

Crossrefs

Row 5 of A306444.
Cf. A000108, A065097 (Cat(n + 1/2)), A265101 (Cat(n + 1/3)), A265102 (Cat(n + 1/4)).

Programs

  • Magma
    [Binomial(10*n+7, 5*n+1)/(10*n+7): n in [0..15]]; // Vincenzo Librandi, Dec 09 2015
    
  • Maple
    seq(binomial(10*n + 7, 5*n + 1)/(10*n + 7), n = 0..12);
  • Mathematica
    Table[Binomial[10n+7, 5n+1]/(10n+7), {n, 0, 20}] (* Vincenzo Librandi, Dec 09 2015 *)
  • PARI
    a(n)=binomial(10*n + 7, 5*n + 1)/(10*n + 7) \\ Anders Hellström, Dec 07 2015
    
  • Sage
    [binomial(10*n+7, 5*n+1)/(10*n+7) for n in (0..20)] # G. C. Greubel, Feb 16 2019

Formula

a(n) = binomial(10*n + 7, 5*n + 1)/(10*n + 7).
(n + 1)*(5*n - 2)*(5*n - 3)*(5*n + 4)*(5*n + 6)*a(n) = 32*(2*n + 1)*(10*n + 1)*(10*n - 1)*(10*n + 3)*(10*n - 3)*a(n-1) with a(0) = 1.
From Ilya Gutkovskiy, Feb 28 2017: (Start)
O.g.f.: (5F4(-3/10,-1/10,1/10,3/10,1/2; -3/5,-2/5,4/5,6/5; 1024*x) - 1)/(2*x).
E.g.f.: 5F5(7/10,9/10,11/10,13/10,3/2; 2/5,3/5,9/5,2,11/5; 1024*x).
a(n) ~ 4^(5*n+3)/(5*sqrt(5*Pi)*n^(3/2)). (End)

A306444 A(n,k) = binomial((2*k+1)*n+2, k*n+1)/((2*k+1)*n+2), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 7, 1, 1, 14, 66, 30, 1, 1, 42, 715, 1144, 143, 1, 1, 132, 8398, 49742, 22610, 728, 1, 1, 429, 104006, 2340135, 3991995, 482885, 3876, 1, 1, 1430, 1337220, 115997970, 757398510, 347993910, 10855425, 21318, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 15 2019

Keywords

Examples

			Square array begins:
   1,    1,        1,           1,              1, ...
   1,    2,        5,          14,             42, ...
   1,    7,       66,         715,           8398, ...
   1,   30,     1144,       49742,        2340135, ...
   1,  143,    22610,     3991995,      757398510, ...
   1,  728,   482885,   347993910,   267058714626, ...
   1, 3876, 10855425, 32018897274, 99543581789652, ...
		

Crossrefs

Columns 0-1 give A000012, A006013.
Rows 0-5 give A000012, A000108(n+1), A065097(n+1), A265101, A265102, A265103.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2) ))); # G. C. Greubel, Feb 16 2019
  • Magma
    [[Binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 16 2019
    
  • Mathematica
    A[n_, k_]:= Binomial[(2*k+1)*n+2, k*n+1]/((2*k+1)*n+2); Table[A[k, n-k], {n,0,12}, {k,0,n}] (* G. C. Greubel, Feb 16 2019 *)
  • PARI
    {A(n,k) = binomial((2*k+1)*n+2, k*n+1)/((2*k+1)*n+2)};
    for(n=0,12, for(k=0,n, print1(A(k,n-k), ", "))) \\ G. C. Greubel, Feb 16 2019
    
  • Sage
    [[binomial((2*(n-k)+1)*k+2, k*(n-k)+1)/((2*(n-k)+1)*k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 16 2019
    

A234040 a(n) = binomial(2*(n+1),n) * gcd(n,2)/(2*(n+1)).

Original entry on oeis.org

1, 1, 5, 7, 42, 66, 429, 715, 4862, 8398, 58786, 104006, 742900, 1337220, 9694845, 17678835, 129644790, 238819350, 1767263190, 3282060210, 24466267020, 45741281820, 343059613650, 644952073662, 4861946401452, 9183676536076, 69533550916004
Offset: 0

Views

Author

Wolfdieter Lang, Feb 23 2014

Keywords

Comments

This gives the next-to-central entries of the even-indexed rows of the triangle A107711.
For the central entries (of the even-numbered rows) see A001700.
This sequence is composed of the bisection sequences A024492 (even part) and A065097 (odd part).

Crossrefs

Programs

  • Magma
    [Binomial(2*(n+1),n)*Gcd(n,2)/(2*(n+1)): n in [0..30]]; // Vincenzo Librandi, Feb 25 2014
  • Mathematica
    Table[Binomial[2 (n + 1), n] GCD[n, 2]/(2 (n + 1)), {n, 0, 40}] (* Vincenzo Librandi, Feb 25 2014 *)

Formula

a(n) = binomial(2*(n+1),n)*gcd(n,2)/(2*(n+1)) for n >= 0.
a(n) = A107711(2*(n+1), n) for n >= 0.
G.f.: (3*c(x)- c(-x)-2)/(4*x) =(4*(1-x) - 3*sqrt(1-4*x) - sqrt(1+4*x))/(8*x^2), with c(x) the o.g.f. of the Catalan numbers A000108. See the bisection comment above.

Extensions

a(26) from Vincenzo Librandi, Feb 25 2014

A349740 Number of partitions of set [n] in a set of <= k noncrossing subsets. Number of Dyck n-paths with at most k peaks. Both with 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 7, 13, 14, 0, 1, 11, 31, 41, 42, 0, 1, 16, 66, 116, 131, 132, 0, 1, 22, 127, 302, 407, 428, 429, 0, 1, 29, 225, 715, 1205, 1401, 1429, 1430, 0, 1, 37, 373, 1549, 3313, 4489, 4825, 4861, 4862, 0, 1, 46, 586, 3106, 8398, 13690, 16210, 16750, 16795, 16796
Offset: 0

Views

Author

Ron L.J. van den Burg, Nov 28 2021

Keywords

Comments

Given a partition P of the set {1,2,...,n}, a crossing in P are four integers [a, b, c, d] with 1 <= a < b < c < d <= n for which a, c are together in a block, and b, d are together in a different block. A noncrossing partition is a partition with no crossings.

Examples

			For n=4 the T(4,3)=13 partitions are {{1,2,3,4}}, {{1,2,3},{4}}, {{1,2,4},{3}}, {{1,3,4},{2}}, {{2,3,4},{1}}, {{1,2},{3,4}}, {{1,4},{2,3}}, {{1,2},{3},{4}}, {{1,3},{2},{4}}, {{1,4},{2},{3}}, {{1},{2,3},{4}}, {{1},{2,4},{3}}, {{1},{2},{3,4}}.
The set of sets {{1,3},{2,4}} is missing because it is crossing. If you add the set of 4 sets, {{1},{2},{3},{4}}, you get T(4, 4) = 14 = A000108(4), the 4th Catalan number.
Triangle begins:
  1;
  0, 1;
  0, 1,  2;
  0, 1,  4,   5;
  0, 1,  7,  13,   14;
  0, 1, 11,  31,   41,   42;
  0, 1, 16,  66,  116,  131,  132;
  0, 1, 22, 127,  302,  407,  428,  429;
  0, 1, 29, 225,  715, 1205, 1401, 1429, 1430;
  0, 1, 37, 373, 1549, 3313, 4489, 4825, 4861, 4862;
  ...
		

Crossrefs

Columns k=0-4 give (for n>=k): A000007, A000012, A000124(n-1), A116701, A116844.
Partial sums of A090181 per row.
Main diagonal is A000108.
Row sums give A088218.
T(2*n,n) gives A065097.
T(n,n-1) gives A001453 for n >= 2.

Programs

  • Maple
    b:= proc(x, y, t) option remember; expand(`if`(y<0
          or y>x, 0, `if`(x=0, 1, add(b(x-1, y+j, j)*
         `if`(t=1 and j<1, z, 1), j=[-1, 1]))))
        end:
    T:= proc(n, k) option remember; `if`(k<0, 0,
          T(n, k-1)+coeff(b(2*n, 0$2), z, k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Nov 28 2021
  • Mathematica
    T[n_, k_] := If[n == 0, 1, Sum[j Binomial[n, j]^2 / (n - j + 1), {j, 0, k}] / n];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 29 2021 *)

Formula

T(n,k) = Sum_{j=0..k} A090181(n,j), the partial sum of the Narayana numbers.
T(n,n) = A000108(n), the n-th Catalan number.
G.f.: (1 + x - x*y - sqrt((1-x*(1+y))^2 - 4*y*x^2))/(2*x*(1-y)).
T(n,k) = (1/n)*Sum_{j=0..k} j*binomial(n,j)^2 / (n-j+1) for n >= 1. - Peter Luschny, Nov 29 2021

A065424 Catalan-like formula: a(n) = binomial(6*n, 3*n+1)/(9*n+6).

Original entry on oeis.org

1, 33, 1326, 59432, 2851425, 143291610, 7446255180, 396893583792, 21579377870484, 1192183281903845, 66734212415276406, 3776778437640143208, 215744630060724034270, 12423227699242323077940, 720356761939547257421400, 42024927437494196952957408, 2464931252806478840545733484
Offset: 1

Views

Author

Len Smiley, Nov 16 2001

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(6*n,3*n+1)/(9*n+6): n in [1..20]]; // Vincenzo Librandi, Nov 17 2011
  • Mathematica
    a[n_] := Binomial[6*n, 3*n+1]/(9*n+6); Array[a, 20] (* Amiram Eldar, Sep 04 2025 *)

Formula

G.f.: A*sqrt((A+1)*(1+9*A)) where A=x*(1+9*A)^3*(1+A). - Mark van Hoeij, Nov 16 2011
-(n-1)*(3*n+2)*(3*n+1)*a(n) + 8*(6*n-5)*(6*n-1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Oct 31 2015
a(n) = (1/9)*A000245(3*n) = n*A000108(3*n)/(3*n + 2) for n >= 1. - Peter Bala, Mar 08 2023
a(n) ~ 2^(6*n) / (9 * sqrt(3*Pi) * n^(3/2)). - Amiram Eldar, Sep 04 2025

A358723 Number of n-node rooted trees of edge-height equal to their number of leaves.

Original entry on oeis.org

0, 1, 0, 2, 1, 6, 7, 26, 43, 135, 276, 755, 1769, 4648, 11406, 29762, 75284, 195566, 503165, 1310705, 3402317, 8892807, 23231037, 60906456, 159786040, 420144405, 1105673058, 2914252306, 7688019511, 20304253421, 53667498236, 141976081288, 375858854594, 995728192169
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Edge-height (A109082) is the number of edges in the longest path from root to leaf.

Examples

			The a(1) = 0 through a(7) = 7 trees:
  .  (o)  .  ((oo))  ((o)(o))  (((ooo)))  (((o))(oo))
             (o(o))            ((o(oo)))  (((o)(oo)))
                               ((oo(o)))  ((o)((oo)))
                               (o((oo)))  ((o)(o(o)))
                               (o(o(o)))  ((o(o)(o)))
                               (oo((o)))  (o((o)(o)))
                                          (o(o)((o)))
		

Crossrefs

For internals instead of leaves: A011782, ranked by A209638.
For internals instead of edge-height: A185650 aerated, ranked by A358578.
For node-height: A358589 (square trees), ranked by A358577, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internals, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{-2}]==Depth[#]-2&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h-1,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023
Previous Showing 21-27 of 27 results.