cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A062784 Numbers k such that sigma(k) + phi(k) is a perfect square.

Original entry on oeis.org

2, 4, 56, 110, 125, 161, 287, 391, 418, 423, 511, 588, 609, 675, 721, 799, 910, 935, 1048, 1057, 1102, 1130, 1281, 1351, 1457, 1485, 1630, 1716, 1799, 1826, 1921, 2047, 2060, 2177, 2255, 2378, 2403, 2449, 2457, 2472, 3199, 3266, 3915, 4010, 4376, 4417
Offset: 1

Views

Author

Jason Earls, Jul 18 2001

Keywords

Crossrefs

Cf. A065387.

Programs

  • Mathematica
    Select[Range[4500],IntegerQ[Sqrt[DivisorSigma[1,#]+EulerPhi[#]]]&] (* Harvey P. Dale, Jan 18 2012 *)
  • PARI
    select(k->issquare(sigma(k) + eulerphi(k)), [1..5000])

A065388 Record values for sigma(m) + phi(m): sum of sigma and totient is larger than for any previous number.

Original entry on oeis.org

2, 4, 6, 9, 10, 14, 19, 22, 32, 39, 45, 50, 68, 80, 103, 106, 108, 140, 144, 184, 219, 248, 258, 284, 316, 392, 451, 528, 594, 624, 672, 808, 816, 915, 948, 955, 1088, 1266, 1440, 1640, 1704, 1824, 1843, 2020, 2031, 2176, 2208, 2610, 3072, 3304, 3512, 3888
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Crossrefs

Programs

  • PARI
    { n=r=0; for (m=1, 10^9, x=sigma(m) + eulerphi(m); if (x > r, r=x; write("b065388.txt", n++, " ", x); if (n==500, return)) ) } \\ Harry J. Smith, Oct 17 2009

Formula

a(n) = sigma(A015702(n)) + phi(A015702(n));
a(n) = A000203(A015702(n)) + A000010(A015702(n)).
a(n) = A065387(A015702(n)). - Amiram Eldar, Mar 22 2025

A071391 Least number m such that sigma(m) + phi(m) = n or 0 if no such number exists.

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 0, 0, 4, 5, 0, 0, 0, 6, 0, 0, 0, 0, 8, 0, 0, 10, 0, 0, 0, 13, 0, 0, 0, 14, 0, 12, 0, 17, 0, 0, 0, 19, 16, 0, 0, 0, 0, 21, 18, 22, 0, 0, 0, 20, 25, 0, 0, 26, 0, 0, 0, 27, 0, 0, 0, 31, 0, 0, 0, 0, 0, 24, 0, 34, 0, 35, 0, 37, 0, 0, 0, 38, 32, 30, 0, 41, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Examples

			n=256: a(256) = 110, sigma(110) + phi(110) = 216 + 40 = 256 = n and no positive integer k < 110 has sigma(k) + phi(k) = 256.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]+EulerPhi[x] t=Table[0, {100}]; Do[c=f[n]; If[c<101&&t[[c]]==0, t[[c]]=n], {n, 1, 1000000}]; t
  • PARI
    a(n) = for(m=1, n, if(sigma(m)+eulerphi(m)==n, return(m))); 0; \\ Jinyuan Wang, Jul 29 2020
    
  • PARI
    first(n) = { my(v = vector(n)); for(i = 1, n, c = sigma(i) + eulerphi(i); if(c <= n, if(v[c] == 0, v[c] = i ) ) ); v } \\ David A. Corneth, Jul 30 2020

Formula

a(n) = Min{x; A000203(x)+A000010(x)=n} or a(n) = 0 if no solution exists.

A072779 a(n) = sigma_2(n) + phi(n) * sigma(n).

Original entry on oeis.org

2, 8, 18, 35, 50, 74, 98, 145, 169, 202, 242, 322, 338, 394, 452, 589, 578, 689, 722, 882, 884, 970, 1058, 1330, 1271, 1354, 1540, 1722, 1682, 1876, 1922, 2373, 2180, 2314, 2452, 3003, 2738, 2890, 3044, 3650, 3362, 3652, 3698, 4242, 4238, 4234, 4418
Offset: 1

Views

Author

T. D. Noe, Jul 15 2002

Keywords

Comments

This sequence is interesting because (1) a(n) >= 2 n^2, with equality only when n is prime (or 1) and (2) a(n) = 2 + 2*n^2 if and only if n is the product of two distinct primes. Note for twin primes: let n = m^2 - 1, then m-1 and m+1 are twin primes if and only if a(n) = 2 + 2*n^2. Note for the Goldbach conjecture: let n = m^2 - r^2, then m-r and m+r are primes that add to 2m if and only if a(n) = 2 + 2*n^2. See A072780 for a(n) - 2*n^2.

Crossrefs

Programs

  • Haskell
    a072779 n = a001157 n + (a000203 n) * (a000010 n)
    -- Reinhard Zumkeller, Jan 15 2013
    
  • Mathematica
    Table[DivisorSigma[2, n]+EulerPhi[n]DivisorSigma[1, n], {n, 100}]
  • PARI
    a(n)=sigma(n,2)+eulerphi(n)*sigma(n) \\ Charles R Greathouse IV, May 15 2013

Formula

a(n) = A001157(n) + A000203(n)*A000010(n). - Reinhard Zumkeller, Jan 15 2013
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(3) + Product_{p prime} (1 - 1/(p^2*(p+1))) = A002117 + A065465 = 2.083570742884... . - Amiram Eldar, Dec 03 2023

A077081 Fixed point when phi(sigma(n)+phi(n))=A077080 is iterated with initial value of n.

Original entry on oeis.org

1, 2, 2, 6, 6, 6, 6, 864, 864, 10, 10, 864, 864, 864, 864, 864, 864, 864, 864, 20, 20, 22, 22, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 864, 48, 864, 46, 46, 48, 864, 864, 48, 864, 864, 48, 48, 48, 48, 58, 58
Offset: 1

Views

Author

Labos Elemer, Oct 28 2002

Keywords

Comments

A065387 when iterated seems to converge [tested for initial values below 1024]. On the other hand iterating A051682 often ends in cycle.
Iteration of phi(A065387())=phi(sigma()+phi()) seems to converge. Tested below n=1024. Critical values however arise. For example: n=534,556,557,580,624,702,710, etc. These initial values generate very large terms and i was unable to decide if they converge.
For n=1..1024 no more but 27 distinct fixed points arised:{1,2,6,10,..,3552,570240}

Examples

			n=225: results in iteration sequence of 44 terms: {225,522,444,...,471744,653312,570240}, a[25]=570240.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[DivisorSigma[1, x]+EulerPhi[x]] Table[FixedPoint[f, w], {w, 1, 256}]

Formula

a(n) = FixedPoint[A077080, n].

A077082 Largest value arising when phi(sigma(n)+phi(n))=A077080 is iterated with initial value of n.

Original entry on oeis.org

1, 2, 3, 6, 6, 6, 7, 1044, 1044, 10, 11, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 20, 21, 22, 23, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 1044, 48, 1044, 46, 47, 48, 1044
Offset: 1

Views

Author

Labos Elemer, Oct 28 2002

Keywords

Examples

			n=225: results in iteration sequence of 44 terms: {225,522,444,...,471744,653312,570240}, largest is 653312=a(225).
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[DivisorSigma[1, x]+EulerPhi[x]] Table[Max[FixedPointList[f, w]], {w, 1, 1024}]

Formula

a(n) = Max[FixedPointList[A077080, n]]. See program below. Seems convergent. [tested for initial values below 1024.]

A077083 Length of iteration until a fixed point is reached when phi(sigma[n]+phi(n)) = A077080(n) is iterated with initial value of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 2, 16, 16, 1, 2, 16, 17, 17, 16, 15, 16, 15, 16, 1, 2, 1, 2, 14, 14, 16, 15, 14, 15, 14, 15, 13, 14, 15, 15, 10, 11, 15, 14, 13, 14, 11, 12, 2, 14, 1, 2, 1, 12, 6, 2, 12, 13, 3, 2, 2, 3, 1, 2, 11, 12, 11, 2, 11, 14, 10, 11, 13, 2, 2, 3, 5, 6, 14, 10, 10, 2, 12, 13, 9
Offset: 1

Views

Author

Labos Elemer, Oct 28 2002

Keywords

Examples

			n=1,2,6,10,..864: a[n]=1, n is fixed point for some n; n=225: results in iteration sequence of 44 terms: {225,522,444,...,471744,653312,570240}, 44=a[225].
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[DivisorSigma[1, x]+EulerPhi[x]] Table[Length[FixedPointList[f, w]]-1, {w, 1, 1024}]

Formula

a(n)=Length[FixedPointList[A077080, n]]-1.

A077088 a(n) = phi(sigma(n) - phi(n)), where phi is Euler's totient function and sigma is the sum of divisors function, with a(1) = 0.

Original entry on oeis.org

0, 1, 1, 4, 1, 4, 1, 10, 6, 6, 1, 8, 1, 6, 8, 22, 1, 20, 1, 16, 8, 12, 1, 24, 10, 8, 10, 20, 1, 32, 1, 46, 12, 18, 8, 78, 1, 12, 16, 36, 1, 24, 1, 32, 18, 20, 1, 36, 8, 72, 16, 36, 1, 32, 16, 32, 20, 30, 1, 72, 1, 20, 32, 72, 12, 60, 1, 46, 24, 32, 1, 108, 1, 24, 24, 48, 12, 48, 1, 60
Offset: 1

Views

Author

Labos Elemer, Nov 04 2002

Keywords

Comments

a(p) = 1 for p prime. Otherwise a(n) is even.

Examples

			a(10) = 6 because sigma(10) = 18 and phi(10) = 4, and so phi(18 - 4) = phi(14) = 6.
a(11) = 1 because sigma(11) = 12 and phi(11) = 10, so phi(12 - 10) = phi(2) = 1.
a(12) = 8 because sigma(12) = 28 and phi(12) = 4, so phi(28 - 4) = phi(24) = 8.
		

Crossrefs

Cf. A000010, A000203, A051612, A065387. See iterations in A077090-A077100.

Programs

Formula

a(1) = 0; and for n > 1, a(n) = A000010(A051612(n)).

Extensions

Value of a(1) clarified by Antti Karttunen, Mar 04 2018

A077102 Smallest number m such that GCD(a+b,a-b) = n, where a = sigma(m) and b = phi(m).

Original entry on oeis.org

4, 1, 18, 21, 200, 14, 3364, 12, 722, 328, 9801, 42, 25281, 116, 1800, 15, 36992, 810, 4414201, 88, 196, 29161, 541696, 35, 2928200, 1413, 103968, 284, 98942809, 488, 1547536, 364, 19602, 17536, 814088, 370, 49042009, 55297, 1521, 440, 3150464641
Offset: 1

Views

Author

Labos Elemer, Nov 12 2002

Keywords

Examples

			For n = 10, a(10) = 328, sigma(328) = 630, phi(328) = 160, sigma(328) + phi(328) = 790, sigma(328) - phi(328) = 470, GCD(790,470) = 10.
For n = odd number, a(n) should be either a square or twice a square and so faster search for large values is possible, like e.g., for n = 97: a(97) = 435979^2 is the smallest solution.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Apply[GCD, {DivisorSigma[1, x]+EulerPhi[x], DivisorSigma[1, x]-EulerPhi[x]}]; t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 10^13}]; t
  • PARI
    lista(len) = {my(v = vector(len), c = 0, k = 1, a, b, i); while(c < len, f = factor(k); a = sigma(f); b = eulerphi(f); i = gcd(a+b,a-b); if(i <= len && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Nov 14 2024

Formula

a(n) = Min{x; A077099(x) = n}.

A156775 Number of iterations of x->(sigma(x)+phi(x))/2 until a non-integer or a previous term is reached, starting with x=n; a(n)=0 if this never happens.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 1, 2, 3, 2, 1, 4, 1, 3, 2, 4, 1, 3, 1, 1, 4, 3, 2, 1, 1, 4, 3, 2, 1, 9, 1, 3, 4, 2, 1, 7, 1, 1, 3, 2, 1, 8, 3, 2, 3, 2, 1, 4, 1, 8, 7, 1, 4, 3, 1, 2, 7, 6, 1, 1, 1, 4, 3, 4, 6, 5, 1, 2, 1, 2, 1, 5, 6, 5, 4, 3, 1, 9, 4, 3, 7, 6, 5, 4, 1, 1, 9, 1, 1, 5, 1, 9, 3
Offset: 1

Views

Author

M. F. Hasler, Feb 15 2009

Keywords

Comments

In [Guy 1997] the iteration is said to fracture when sigma(x)+phi(x) becomes odd. It is not known if a(n)=0 for some n.
A156776(n) gives the number of iterations until the sequence fractures, resp. 0 if this never happens.

Examples

			Let f(x)=(sigma(x)+phi(x))/2. For x=1 we have f(x) = (1+1)/2 = 1, i.e. after a(1)=1 iterations, the initial term 1 is encountered. For x=2 we have f(x) = (3+1)/2 = 2, so a(2)=1 for the same reason; idem for x=3 and x=5. For x=4 we have f(x) = (7+2)/2 = 9/2, the sequence "fractures" after a(4)=1 iterations. For x=6 we have f(x) = (12+2)/2 = 7, f(7) = (8+6)/2 = 7: after a(6)=2 iterations, there's a value already seen before.
		

Crossrefs

Cf. A156776, A065387(n) = A000203(n) + A000010(n).

Programs

  • Mathematica
    f[n_] := If[IntegerQ[n], n, 0]; g[n_] := f[(DivisorSigma[1, n] + EulerPhi[n])/2]; a[n_] := Module[{s = NestWhileList[g, n, UnsameQ, All]}, Length[s] - If[s[[-1]] == 0, 2, 1]]; Array[a, 105] (* Amiram Eldar, Apr 01 2024 *)
  • PARI
    A156775(n,u=[])={ until( denominator( n=(sigma(n)+eulerphi(n))/2)>1 || setsearch(u,n), u=setunion(u,Set(n)));#u }
Previous Showing 21-30 of 42 results. Next