cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A350452 Number T(n,k) of endofunctions on [n] with exactly k connected components and no fixed points; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.

Original entry on oeis.org

1, 0, 0, 1, 0, 8, 0, 78, 3, 0, 944, 80, 0, 13800, 1810, 15, 0, 237432, 41664, 840, 0, 4708144, 1022252, 34300, 105, 0, 105822432, 27098784, 1286432, 10080, 0, 2660215680, 778128336, 47790540, 648900, 945, 0, 73983185000, 24165049920, 1815578160, 36048320, 138600
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Comments

For k >= 2 and p prime, T(p,k) == 0 (mod 4*p*(p-1)). - Mélika Tebni, Jan 20 2023

Examples

			Triangle T(n,k) begins:
  1;
  0;
  0,          1;
  0,          8;
  0,         78,         3;
  0,        944,        80;
  0,      13800,      1810,       15;
  0,     237432,     41664,      840;
  0,    4708144,   1022252,    34300,    105;
  0,  105822432,  27098784,  1286432,  10080;
  0, 2660215680, 778128336, 47790540, 648900, 945;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000435.
Row sums give A065440.
T(2n,n) gives A001147.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          b(n-i)*binomial(n-1, i-1)*x*c(i), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
         b[n - i]*Binomial[n - 1, i - 1]*x*c[i], {i, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n/2}]][b[n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
  • PARI
    \\ here AS1(n,k) gives associated Stirling numbers of 1st kind.
    AS1(n,k)={(-1)^(n+k)*sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 1) )}
    T(n,k) = {if(n==0, k==0, sum(j=k, n, n^(n-j)*binomial(n-1, j-1)*AS1(j,k)))} \\ Andrew Howroyd, Jan 20 2023

Formula

From Mélika Tebni, Jan 20 2023: (Start)
E.g.f. column k: (LambertW(-x) - log(1 + LambertW(-x)))^k / k!.
-Sum_{k=1..n/2} (-1)^k*T(n,k) = A071720(n+1), for n > 0.
-Sum_{k=1..n/2} (-1)^k*T(n,k) / (n-1) = A007830(n-2), for n > 1.
T(n,k) = Sum_{j=k..n} n^(n-j)*binomial(n-1, j-1)*A106828(j, k) for n > 0. (End)

A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890
Offset: 0

Views

Author

Thomas Wieder, Mar 20 2009

Keywords

Comments

Consider the k-fold Cartesian products CP(n,k) of the vector A(n) = [1, 2, 3, ..., n].
An element of CP(n,k) is a n-tuple T_t of the form T_t = [i_1, i_2, i_3, ..., i_k] with t=1, .., n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)).
The test on i_j > i_(j+1) generates A158498. One gets the Pascal triangle A007318 if the indicator function tests whether for any two i_j, i_(j+1) in T_t one has i_j >= i_(j+1).
Use of other indicator functions can also calculate the Bell numbers A000110, A000045 or A000108.

Examples

			Array, A(n, k) = n*(n-1)^(k-1) for n > 1, A(n, k) = 1 otherwise, begins as:
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  2,   2,    2,     2,      2,       2,        2,        2, ... A040000;
  1,  3,   6,   12,    24,     48,      96,      192,      384, ... A003945;
  1,  4,  12,   36,   108,    324,     972,     2916,     8748, ... A003946;
  1,  5,  20,   80,   320,   1280,    5120,    20480,    81920, ... A003947;
  1,  6,  30,  150,   750,   3750,   18750,    93750,   468750, ... A003948;
  1,  7,  42,  252,  1512,   9072,   54432,   326592,  1959552, ... A003949;
  1,  8,  56,  392,  2744,  19208,  134456,   941192,  6588344, ... A003950;
  1,  9,  72,  576,  4608,  36864,  294912,  2359296, 18874368, ... A003951;
  1, 10,  90,  810,  7290,  65610,  590490,  5314410, 47829690, ... A003952;
  1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, ............. A003953;
  1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, ............. A003954;
  1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, ............. A170732;
  ... ;
The triangle begins as:
  1
  1, 1;
  1, 2,  2;
  1, 3,  6,  12;
  1, 4, 12,  36,  108;
  1, 5, 20,  80,  320,  1280;
  1, 6, 30, 150,  750,  3750,  18750;
  1, 7, 42, 252, 1512,  9072,  54432, 326592;
  1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344;
  ...;
T(3,3) = 12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3 = 27 triples in the CP(3,3).
		

Crossrefs

Array rows n: A170733 (n=14), ..., A170769 (n=50).
Columns k: A000012(n) (k=0), A000027(n) (k=1), A002378(n-1) (k=2), A011379(n-1) (k=3), A179824(n) (k=4), A101362(n-1) (k=5), 2*A168351(n-1) (k=6), 2*A168526(n-1) (k=7), 2*A168635(n-1) (k=8), 2*A168675(n-1) (k=9), 2*A170783(n-1) (k=10), 2*A170793(n-1) (k=11).
Diagonals k: A055897 (k=n), A055541 (k=n-1), A373395 (k=n-2), A379612 (k=n-3).
Sums: (-1)^n*A065440(n) (signed row).

Programs

  • Magma
    A158497:= func< n,k | k le 1 select n^k else n*(n-1)^(k-1) >;
    [A158497(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2025
    
  • Mathematica
    A158497[n_, k_]:= If[n<2 || k==0, 1, n*(n-1)^(k-1)];
    Table[A158497[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2025 *)
  • SageMath
    def A158497(n,k): return n^k if k<2 else n*(n-1)^(k-1)
    print(flatten([[A158497(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 18 2025

Formula

T(n, k) = (n-1)^(k-1) + (n-1)^k = n*A079901(n-1,k-1), k > 0.
Sum_{k=0..n} T(n,k) = (n*(n-1)^n - 2)/(n-2), n > 2.

Extensions

Edited by R. J. Mathar, Mar 31 2009
More terms added by G. C. Greubel, Mar 18 2025

A208231 Sum of the minimum cycle length over all functions f:{1,2,...,n}->{1,2,...,n} (endofunctions).

Original entry on oeis.org

0, 1, 5, 37, 373, 4761, 73601, 1336609, 27888281, 657386305, 17276807089, 500876786301, 15879053677697, 546470462226313, 20288935994319929, 808320431258439121, 34397370632215764001, 1557106493482564625793, 74713970491718324746529, 3787792171563440619543133, 202314171910557294992453009
Offset: 0

Views

Author

Geoffrey Critzer, Jan 10 2013

Keywords

Comments

Sum of the number of endofunctions whose cycle lengths are >=i for all i >=1. A000312 + A065440 + A134362 + A208230 + ...

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
          b(n-j, min(m, j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> add(b(j$2)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 20 2016
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Apply[Plus,Table[Range[0,nn]!CoefficientList[Series[Exp[Sum[t^i/i,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]]

Formula

E.g.f.: A(T(x)) = Sum_{k>=1} exp( Sum_{i>=k} T(x)^i/i) - 1 where A(x) is the e.g.f. for A028417 and T(x) is the e.g.f. for A000169.

A333991 a(n) = Sum_{k=0..n} (-n)^k * binomial(2*n,2*k).

Original entry on oeis.org

1, 0, -7, 64, -527, 3776, -7199, -712704, 28545857, -881543168, 25615822601, -733594255360, 20859188600881, -580152163418112, 15048530008948913, -311489672222081024, 713562283940993281, 511135051171610230784, -48010258775057340355559, 3439412411849176925601792
Offset: 0

Views

Author

Seiichi Manyama, Sep 04 2020

Keywords

Crossrefs

Main diagonal of A333989.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-n)^k * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Sep 04 2020 *)
    Table[Hypergeometric2F1[1/2 - n, -n, 1/2, -n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 05 2020 *)
    Table[Cos[2*n*ArcTan[Sqrt[n]]] * (n + 1)^n, {n, 0, 20}] // Round (* Vaclav Kotesovec, Sep 05 2020 *)
  • PARI
    {a(n) = sum(k=0, n, (-n)^k*binomial(2*n, 2*k))}

Formula

From Vaclav Kotesovec, Sep 05 2020: (Start)
a(n) = hypergeometric2F1(1/2 - n, -n, 1/2, -n).
a(n) = (1 + i*sqrt(n))^(2*n)/2 + (1 - i*sqrt(n))^(2*n)/2, where i is the imaginary unit.
a(n) = cos(2*n*arctan(sqrt(n))) * (n + 1)^n. (End)

A350269 Triangle read by rows, T(n, k) = (n - k)!*(n - 1)^k, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 6, 4, 4, 8, 24, 18, 18, 27, 81, 120, 96, 96, 128, 256, 1024, 720, 600, 600, 750, 1250, 3125, 15625, 5040, 4320, 4320, 5184, 7776, 15552, 46656, 279936, 40320, 35280, 35280, 41160, 57624, 100842, 235298, 823543, 5764801
Offset: 0

Views

Author

Peter Luschny, Dec 25 2021

Keywords

Examples

			Triangle starts:
[0]     1
[1]     1,     0
[2]     2,     1,     1
[3]     6,     4,     4,     8
[4]    24,    18,    18,    27,    81
[5]   120,    96,    96,   128,   256,   1024
[6]   720,   600,   600,   750,  1250,   3125,  15625
[7]  5040,  4320,  4320,  5184,  7776,  15552,  46656, 279936
[8] 40320, 35280, 35280, 41160, 57624, 100842, 235298, 823543, 5764801
		

Crossrefs

Cf. A000142 (first column), A001563 (second column), A000312 (subdiagonal), A065440 (main diagonal), A350268 (row sums).

Programs

  • Maple
    A350269 := (n, k) -> (n - k)!*(n - 1)^k:
    seq(seq(A350269(n, k), k = 0..n), n = 0..9);
  • Mathematica
    T[n_, k_] := If[n - 1 == k == 0, 1, (n - k)! * (n - 1)^k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 25 2021 *)

A350454 Number T(n,k) of endofunctions on [n] with exactly k fixed points, none of which are isolated; triangle T(n,k), n >= 0, 0 <= k <= n/2, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 8, 9, 81, 76, 12, 1024, 875, 180, 15625, 12606, 2910, 120, 279936, 217217, 53550, 3780, 5764801, 4348856, 1118936, 102480, 1680, 134217728, 99111735, 26280072, 2817360, 90720, 3486784401, 2532027610, 686569050, 81864720, 3729600, 30240
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Examples

			Triangle T(n,k) begins:
           1;
           0;
           1,          2;
           8,          9;
          81,         76,        12;
        1024,        875,       180;
       15625,      12606,      2910,      120;
      279936,     217217,     53550,     3780;
     5764801,    4348856,   1118936,   102480,    1680;
   134217728,   99111735,  26280072,  2817360,   90720;
  3486784401, 2532027610, 686569050, 81864720, 3729600, 30240;
  ...
		

Crossrefs

Column k=0 gives A065440.
Row sums give |A069856|.
T(2n,n) gives A001813.
Cf. A349454.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    t:= proc(n) option remember; n^(n-1) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
          binomial(n-1, i-1)*(c(i)+`if`(i=1, 0, x*t(i))), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
    # second Maple program:
    egf := k-> exp(LambertW(-x))*(-x-LambertW(-x))^k/((1+LambertW(-x))*k!):
    A350454 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A350454(n, k), k=0..n/2)), n=0..9); # Mélika Tebni, Nov 22 2022
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    t[n_] := t[n] = n^(n - 1);
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*
         Binomial[n - 1, i - 1]*(c[i] + If[i == 1, 0, x*t[i]]), {i, 1, n}]]];
    T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)

Formula

E.g.f. column k: exp(W(-x))*(-x - W(-x))^k / ((1 + W(-x))*k!), W(x) the Lambert W-function. - Mélika Tebni, Nov 22 2022
From Mélika Tebni, Dec 22 2022: (Start)
For n > 1, T(n,1) = n*A045531(n-1).
Sum_{k=0..n} (-1)^(n-k)*T(n+k,k) = 2^n.
Sum_{k=0..n} (-1)^(n-k)*T(n+k,k)/(n+k-1) = 1/n, for n > 1. (End)

A208230 Number of functions f:{1,2,...,n}->{1,2,...,n} with all cycles of length >= 4.

Original entry on oeis.org

1, 0, 0, 0, 6, 144, 3000, 64560, 1498140, 37906848, 1046608416, 31438821600, 1023129229320, 35910464987760, 1353422643322464, 54548490915316944, 2342204085734058000, 106771822456475695680, 5151207243866077428480, 262261296920723111462592, 14053817061169685865626976
Offset: 0

Views

Author

Geoffrey Critzer, Jan 10 2013

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1)*(j-1)!, j=4..n))
        end:
    a:= n-> add(b(j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 20 2016
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[Exp[Sum[t^i/i,{i,4,nn}]],{x,0,nn}],x]

Formula

E.g.f.: exp( Sum_{i>=4} T(x)^i/i ) where T(x) is the e.g.f. for A000169

A350297 Triangle read by rows: T(n,k) = n!*(n-1)^k/k!.

Original entry on oeis.org

1, 1, 0, 2, 2, 1, 6, 12, 12, 8, 24, 72, 108, 108, 81, 120, 480, 960, 1280, 1280, 1024, 720, 3600, 9000, 15000, 18750, 18750, 15625, 5040, 30240, 90720, 181440, 272160, 326592, 326592, 279936, 40320, 282240, 987840, 2304960, 4033680, 5647152, 6588344, 6588344, 5764801
Offset: 0

Views

Author

Robert B Fowler, Dec 23 2021

Keywords

Comments

Rows n >= 2 are coefficients in a double summation power series for the integral of x^(1/x), and the integral of its inverse function y^(y^(y^(y^(...)))). See A350358.

Examples

			Triangle T(n,k) begins:
  -----------------------------------------------------------------
   n\k     0      1      2       3       4       5       6       7
  -----------------------------------------------------------------
   0  |    1,
   1  |    1,     0,
   2  |    2,     2,     1,
   3  |    6,    12,    12,      8,
   4  |   24,    72,   108,    108,     81,
   5  |  120,   480,   960,   1280,   1280,   1024,
   6  |  720,  3600,  9000,  15000,  18750,  18750,  15625,
   7  | 5040, 30240, 90720, 181440, 272160, 326592, 326592, 279936.
  ...
		

Crossrefs

Cf. A000142 (first column), A062119 (second column), A065440 (main diagonal), A055897 (subdiagonal), A217701 (row sums).

Programs

  • Maple
    T := (n, k) -> (n!/k!)*(n - 1)^k:
    seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Dec 24 2021
  • Mathematica
    T[1, 0] := 1; T[n_, k_] := n!*(n - 1)^k/k!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 24 2021 *)

Formula

T(n, k) = binomial(n, k)*A350269(n, k). - Peter Luschny, Dec 25 2021
T(n+1, k) = A061711(n) * (n+1) / A350149(n, k). - Robert B Fowler, Jan 11 2022

A334014 Array read by antidiagonals: T(n,k) is the number of functions f: X->Y, where X is a subset of Y, |X| = n, |Y| = n+k, such that for every x in X, f(f(x)) != x.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 2, 1, 3, 8, 18, 30, 1, 4, 15, 52, 163, 444, 1, 5, 24, 110, 478, 1950, 7360, 1, 6, 35, 198, 1083, 5706, 28821, 138690, 1, 7, 48, 322, 2110, 13482, 83824, 505876, 2954364, 1, 8, 63, 488, 3715, 27768, 203569, 1461944, 10270569, 70469000, 1, 9, 80, 702, 6078, 51894, 436656, 3618540, 29510268, 236644092, 1864204416, 1, 10, 99, 970, 9403, 90150, 854485, 8003950, 74058105, 676549450, 6098971555, 54224221050
Offset: 0

Views

Author

Mason C. Hart, Apr 14 2020

Keywords

Comments

Comes up in the study of the Zen Stare game (see description at A134362).
T(k,n-k)*binomial(n,k)*(n-k-1)!! is the number of different possible Zen Stare rounds with n starting players and k winners.

Examples

			Array begins:
=======================================================
n\k |    0     1     2      3      4      5       6
----+--------------------------------------------------
  0 |    1     1     1      1      1      1       1 ...
  1 |    0     1     2      3      4      5       6 ...
  2 |    0     3     8     15     24     35      48 ...
  3 |    2    18    52    110    198    322     488 ...
  4 |   30   163   478   1083   2110   3715    6078 ...
  5 |  444  1950  5706  13482  27768  51894   90150 ...
  6 | 7360 28821 83824 203569 436656 854485 1557376 ...
  ...
T(2,2) = 8; This because given X = {A,B}, Y = {A,B,C,D}. The only functions f: X->Y that meet the requirement are:
f(A) = C, f(B) = C
f(A) = D, f(B) = D
f(A) = D, f(B) = C
f(A) = C, f(B) = D
f(A) = B, f(B) = C
f(A) = B, f(B) = D
f(A) = C, f(B) = A
f(A) = D, f(B) = A
		

Crossrefs

Rows n=0..3 are A000012, A001477, A005563, A058794.
Columns k=0..4 are A134362, A089466, A089467, A089468, A220690(n+2).

Programs

  • PARI
    T(n,k)={my(w=-lambertw(-x + O(x^max(4,1+n)))); n!*polcoef(exp((k-1)*w - w^2/2)/(1-w), n)} \\ Andrew Howroyd, Apr 15 2020

Formula

T(n,k) = Sum_{i=0..n} k^(n-i)*binomial(n,i)*T(i,n-i); This means that with a constant n, T(n,k) is a polynomial of k.
T(n,0) = A134362(n).
T(0,k) = 1.
For odd n, Sum_{k=1..(n+1)/2} T(2*k-1,n-2*k+1)*binomial(n,2*k-1)*(n-2*k)!! = (n-1)^n.
E.g.f. of k-th column: exp((k-1)*W(x) - W(x)^2/2)/(1-W(x)) where W(x) is the e.g.f. of A000169. - Andrew Howroyd, Apr 15 2020

A351781 a(n) = (n-1)^n*(n-1)!^n.

Original entry on oeis.org

0, 1, 64, 104976, 8153726976, 46656000000000000, 28079296819683655680000000, 2400095991902688012207233433600000000, 37800243186554601452585666030525214621696000000000
Offset: 1

Views

Author

Dan Eilers, Feb 19 2022

Keywords

Comments

a(n) is the number of women's ranking tables in the stable marriage problem that can be paired with a men's ranking table having no two men with the same first choice, without forming any mutual first choices. It has two terms: (n-1)^n from A065440(n), and (n-1)!^n from A091868(n-1). Such men's ranking tables having no two men with the same first choice arise in A343694, A343475, and A344663.
a(n)*A123234 is a useful alternative to A343696 which combines a Latin men's ranking table with an arbitrary women's table, since it gives fewer instances to consider.

Crossrefs

Programs

  • Mathematica
    Table[(n-1)^n*(n-1)!^n,{n,1,9}]

Formula

a(n) = (n-1)^n*(n-1)!^n.
a(n) = A065440(n)*A091868(n-1).
Previous Showing 11-20 of 20 results.