cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 77 results. Next

A352142 Numbers whose prime factorization has all odd indices and all odd exponents.

Original entry on oeis.org

1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of integer partitions with all odd parts and all odd multiplicities, counted by A117958.

Examples

			The terms together with their prime indices begin:
   1 = 1
   2 = prime(1)
   5 = prime(3)
   8 = prime(1)^3
  10 = prime(1) prime(3)
  11 = prime(5)
  17 = prime(7)
  22 = prime(1) prime(5)
  23 = prime(9)
  31 = prime(11)
  32 = prime(1)^5
  34 = prime(1) prime(7)
  40 = prime(1)^3 prime(3)
		

Crossrefs

The restriction to primes is A031368.
The first condition alone is A066208, counted by A000009.
These partitions are counted by A117958.
The squarefree case is A258116, even A258117.
The second condition alone is A268335, counted by A055922.
The even-even version is A352141 counted by A035444.
A000290 = exponents all even, counted by A035363.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by A035363 (complement A086543).
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352143 = odd indices with odd conjugate indices, counted by A053253 aerated.

Programs

  • Mathematica
    Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A352142_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1)))
    A352142_list = list(islice(A352142_gen(),30)) # Chai Wah Wu, Mar 18 2022

Formula

Intersection of A066208 and A268335.
A257991(a(n)) = A001222(a(n)).
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A162641(a(n)) = 0.

A366845 Number of integer partitions of n that contain at least one even part and whose halved even parts are relatively prime.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 23, 31, 43, 58, 82, 107, 144, 189, 250, 323, 420, 537, 695, 880, 1114, 1404, 1774, 2210, 2759, 3423, 4239, 5223, 6430, 7869, 9640, 11738, 14266, 17297, 20950, 25256, 30423, 36545, 43824, 52421, 62620, 74599, 88802, 105431
Offset: 0

Views

Author

Gus Wiseman, Oct 28 2023

Keywords

Examples

			The partition y = (6,4) has halved even parts (3,2) which are relatively prime, so y is counted under a(10).
The a(2) = 1 through a(9) = 15 partitions:
  (2)  (21)  (22)   (32)    (42)     (52)      (62)       (72)
             (211)  (221)   (222)    (322)     (332)      (432)
                    (2111)  (321)    (421)     (422)      (522)
                            (2211)   (2221)    (521)      (621)
                            (21111)  (3211)    (2222)     (3222)
                                     (22111)   (3221)     (3321)
                                     (211111)  (4211)     (4221)
                                               (22211)    (5211)
                                               (32111)    (22221)
                                               (221111)   (32211)
                                               (2111111)  (42111)
                                                          (222111)
                                                          (321111)
                                                          (2211111)
                                                          (21111111)
		

Crossrefs

For all parts we have A000837, complement A018783.
These partitions have ranks A366847.
For odd parts we have A366850, ranks A366846, complement A366842.
A000041 counts integer partitions, strict A000009, complement A047967.
A035363 counts partitions into all even parts, ranks A066207.
A078374 counts relatively prime strict partitions.
A168532 counts partitions by gcd.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
A366531 = 2*A366533 adds up even prime indices, triangle A113686/A174713.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], GCD@@Select[#,EvenQ]/2==1&]],{n,0,30}]

A366848 Odd numbers whose odd prime indices are relatively prime.

Original entry on oeis.org

55, 85, 155, 165, 187, 205, 253, 255, 275, 295, 335, 341, 385, 391, 415, 425, 451, 465, 485, 495, 527, 545, 561, 595, 605, 615, 635, 649, 697, 713, 715, 737, 745, 759, 765, 775, 785, 799, 803, 825, 885, 895, 913, 935, 943, 955, 1003, 1005, 1023, 1025, 1045
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The odd prime indices of 345 are {3,9}, which are not relatively prime, so 345 is not in the sequence.
The odd prime indices of 825 are {3,3,5}, which are relatively prime, so 825 is in the sequence
The terms together with their prime indices begin:
    55: {3,5}
    85: {3,7}
   155: {3,11}
   165: {2,3,5}
   187: {5,7}
   205: {3,13}
   253: {5,9}
   255: {2,3,7}
   275: {3,3,5}
   295: {3,17}
   335: {3,19}
   341: {5,11}
   385: {3,4,5}
   391: {7,9}
   415: {3,23}
   425: {3,3,7}
   451: {5,13}
   465: {2,3,11}
   485: {3,25}
   495: {2,2,3,5}
		

Crossrefs

Including even terms and prime indices gives A289509, ones of A289508, counted by A000837.
Including even prime indices gives A302697, counted by A302698.
Including even terms gives A366846, counted by A366850.
For halved even instead of odd prime indices we have A366849.
A000041 counts integer partitions, strict A000009 (also into odds).
A066208 lists numbers with all odd prime indices, even A066207.
A112798 lists prime indices, length A001222, sum A056239.
A257991 counts odd prime indices, even A257992.
A366528 adds up odd prime indices, partition triangle A113685.
A366531 = 2*A366533 adds up even prime indices, triangle A113686/A174713.

Programs

  • Mathematica
    Select[Range[1000], OddQ[#]&&GCD@@Select[PrimePi/@First/@FactorInteger[#], OddQ]==1&]

A372589 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even.

Original entry on oeis.org

3, 4, 5, 9, 12, 13, 14, 16, 17, 20, 22, 23, 25, 30, 31, 35, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372588.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {1,2}   3  (2)
          {3}   4  (1,1)
        {1,3}   5  (3)
        {1,4}   9  (2,2)
        {3,4}  12  (2,1,1)
      {1,3,4}  13  (6)
      {2,3,4}  14  (4,1)
          {5}  16  (1,1,1,1)
        {1,5}  17  (7)
        {3,5}  20  (3,1,1)
      {2,3,5}  22  (5,1)
    {1,2,3,5}  23  (9)
      {1,4,5}  25  (3,3)
    {2,3,4,5}  30  (3,2,1)
  {1,2,3,4,5}  31  (11)
      {1,2,6}  35  (4,3)
        {3,6}  36  (2,2,1,1)
      {1,3,6}  37  (12)
      {2,3,6}  38  (8,1)
    {1,2,3,6}  39  (6,2)
      {2,4,6}  42  (4,2,1)
    {1,2,4,6}  43  (14)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
Positions of even terms in A372442, zeros A372436.
The complement is A372588.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031215 lists even-indexed primes, odd A031368.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is even.

A338556 Products of three prime numbers of even index.

Original entry on oeis.org

27, 63, 117, 147, 171, 261, 273, 333, 343, 387, 399, 477, 507, 549, 609, 637, 639, 711, 741, 777, 801, 903, 909, 931, 963, 1017, 1083, 1113, 1131, 1179, 1183, 1251, 1281, 1359, 1421, 1443, 1467, 1491, 1557, 1629, 1653, 1659, 1677, 1729, 1737, 1791, 1813, 1869
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2020

Keywords

Comments

All terms are odd.
Also Heinz numbers of integer partitions with 3 parts, all of which are even. These partitions are counted by A001399.

Examples

			The sequence of terms together with their prime indices begins:
      27: {2,2,2}      637: {4,4,6}     1183: {4,6,6}
      63: {2,2,4}      639: {2,2,20}    1251: {2,2,34}
     117: {2,2,6}      711: {2,2,22}    1281: {2,4,18}
     147: {2,4,4}      741: {2,6,8}     1359: {2,2,36}
     171: {2,2,8}      777: {2,4,12}    1421: {4,4,10}
     261: {2,2,10}     801: {2,2,24}    1443: {2,6,12}
     273: {2,4,6}      903: {2,4,14}    1467: {2,2,38}
     333: {2,2,12}     909: {2,2,26}    1491: {2,4,20}
     343: {4,4,4}      931: {4,4,8}     1557: {2,2,40}
     387: {2,2,14}     963: {2,2,28}    1629: {2,2,42}
     399: {2,4,8}     1017: {2,2,30}    1653: {2,8,10}
     477: {2,2,16}    1083: {2,8,8}     1659: {2,4,22}
     507: {2,6,6}     1113: {2,4,16}    1677: {2,6,14}
     549: {2,2,18}    1131: {2,6,10}    1729: {4,6,8}
     609: {2,4,10}    1179: {2,2,32}    1737: {2,2,44}
		

Crossrefs

A014612 allows all prime indices (not just even) (strict: A007304).
A066207 allows products of any length (strict: A258117).
A338471 is the version for odds instead of evens (strict: A307534).
A338557 is the strict case.
A014311 is a ranking of ordered triples (strict: A337453).
A001399(n-3) counts 3-part partitions (strict: A001399(n-6)).
A005117 lists squarefree numbers, with even case A039956.
A008284 counts partitions by sum and length (strict: A008289).
A023023 counts 3-part relatively prime partitions (strict: A101271).
A046316 lists products of exactly three odd primes (strict: A046389).
A066208 lists numbers with all odd prime indices (strict: A258116).
A075818 lists even Heinz numbers of 3-part partitions (strict: A075819).
A307719 counts 3-part pairwise coprime partitions (strict: A220377).
A285508 lists Heinz numbers of non-strict triples.
Subsequence of A332820.

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]==3&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
  • PARI
    isok(m) = my(f=factor(m)); (bigomega(f)==3) && (#select(x->(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
    
  • Python
    from itertools import filterfalse
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A338556(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))>>1)-(b>>1)+1 for a,k in filterfalse(lambda x:x[0]&1,enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2)) for b,m in filterfalse(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024

A349159 Numbers whose sum of prime indices is twice their alternating sum.

Original entry on oeis.org

1, 12, 63, 66, 112, 190, 255, 325, 408, 434, 468, 609, 805, 832, 931, 946, 1160, 1242, 1353, 1380, 1534, 1539, 1900, 2035, 2067, 2208, 2296, 2387, 2414, 2736, 3055, 3108, 3154, 3330, 3417, 3509, 3913, 4185, 4340, 4503, 4646, 4650, 4664, 4864, 5185, 5684, 5863
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are also Heinz numbers of partitions whose sum is twice their alternating sum.

Examples

			The terms and their prime indices begin:
     1: ()
    12: (2,1,1)
    63: (4,2,2)
    66: (5,2,1)
   112: (4,1,1,1,1)
   190: (8,3,1)
   255: (7,3,2)
   325: (6,3,3)
   408: (7,2,1,1,1)
   434: (11,4,1)
   468: (6,2,2,1,1)
   609: (10,4,2)
   805: (9,4,3)
   832: (6,1,1,1,1,1,1)
   931: (8,4,4)
   946: (14,5,1)
  1160: (10,3,1,1,1)
		

Crossrefs

These partitions are counted by A000712 up to 0's.
An ordered version is A348614, negative A349154.
The negative version is A348617.
The reverse version is A349160, counted by A006330 up to 0's.
A025047 counts alternating or wiggly compositions, complement A345192.
A027193 counts partitions with rev-alt sum > 0, ranked by A026424.
A034871, A097805, and A345197 count compositions by alternating sum.
A035363 = partitions with alt sum 0, ranked by A066207, complement A086543.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A103919 counts partitions by alternating sum, reverse A344612.
A116406 counts compositions with alternating sum >= 0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344607 counts partitions with rev-alt sum >= 0, ranked by A344609.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[1000],Total[primeMS[#]]==2*ats[primeMS[#]]&]

Formula

A056239(a(n)) = 2*A316524(a(n)).
A346697(a(n)) = 3*A346698(a(n)).

A349160 Numbers whose sum of prime indices is twice their reverse-alternating sum.

Original entry on oeis.org

1, 10, 12, 39, 63, 66, 88, 112, 115, 190, 228, 255, 259, 306, 325, 408, 434, 468, 517, 544, 609, 620, 783, 793, 805, 832, 870, 931, 946, 1150, 1160, 1204, 1241, 1242, 1353, 1380, 1392, 1534, 1539, 1656, 1691, 1722, 1845, 1900, 2035, 2067, 2208, 2296, 2369
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are also Heinz numbers of partitions whose sum is twice their reverse-alternating sum.

Examples

			The terms and their prime indices begin:
     1: ()
    10: (3,1)
    12: (2,1,1)
    39: (6,2)
    63: (4,2,2)
    66: (5,2,1)
    88: (5,1,1,1)
   112: (4,1,1,1,1)
   115: (9,3)
   190: (8,3,1)
   228: (8,2,1,1)
   255: (7,3,2)
   259: (12,4)
   306: (7,2,2,1)
   325: (6,3,3)
   408: (7,2,1,1,1)
   434: (11,4,1)
   468: (6,2,2,1,1)
		

Crossrefs

These partitions are counted by A006330 up to 0's.
The negative reverse version is A348617.
An ordered version is A349153, non-reverse A348614.
The non-reverse version is A349159.
A027193 counts partitions with rev-alt sum > 0, ranked by A026424.
A034871, A097805, A345197 count compositions by alternating sum.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A103919 counts partitions by alternating sum, reverse A344612.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[1000],Total[primeMS[#]]==2*sats[primeMS[#]]&]

Formula

A056239(a(n)) = 2*A344616(a(n)).
A346700(a(n)) = 3*A346699(a(n)).

A352141 Numbers whose prime factorization has all even indices and all even exponents.

Original entry on oeis.org

1, 9, 49, 81, 169, 361, 441, 729, 841, 1369, 1521, 1849, 2401, 2809, 3249, 3721, 3969, 5041, 6241, 6561, 7569, 7921, 8281, 10201, 11449, 12321, 12769, 13689, 16641, 17161, 17689, 19321, 21609, 22801, 25281, 26569, 28561, 29241, 29929, 32761, 33489, 35721
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of partitions with all even parts and all even multiplicities, counted by A035444.

Examples

			The terms together with their prime indices begin:
     1 = 1
     9 = prime(2)^2
    49 = prime(4)^2
    81 = prime(2)^4
   169 = prime(6)^2
   361 = prime(8)^2
   441 = prime(2)^2 prime(4)^2
   729 = prime(2)^6
   841 = prime(10)^2
  1369 = prime(12)^2
  1521 = prime(2)^2 prime(6)^2
  1849 = prime(14)^2
  2401 = prime(4)^4
  2809 = prime(16)^2
  3249 = prime(2)^2 prime(8)^2
  3721 = prime(18)^2
  3969 = prime(2)^4 prime(4)^2
		

Crossrefs

The second condition alone (all even exponents) is A000290, counted by A035363.
The restriction to primes is A031215.
These partitions are counted by A035444.
The first condition alone is A066207, counted by A035363, squarefree A258117.
A056166 = exponents all prime, counted by A055923.
A066208 = prime indices all odd, counted by A000009.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even exponents, odd A162642.
A257991 counts odd indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Select[Range[1000],#==1||And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
  • Python
    from itertools import count, islice
    from sympy import factorint, primepi
    def A352141_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:all(map(lambda x: not (x[1]%2 or primepi(x[0])%2), factorint(k).items())),count(max(startvalue,1)))
    A352141_list = list(islice(A352141_gen(),30)) # Chai Wah Wu, Mar 18 2022

Formula

Intersection of A000290 and A066207.
A257991(a(n)) = A162642(a(n)) = 0.
A257992(a(n)) = A001222(a(n)).
A162641(a(n)) = A001221(a(n)).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2*k)^2) = 1.163719... . - Amiram Eldar, Sep 19 2022

A372587 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.

Original entry on oeis.org

6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372586.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {2,3}   6  (2,1)
          {1,2,3}   7  (4)
            {2,4}  10  (3,1)
          {1,2,4}  11  (5)
          {1,3,4}  13  (6)
          {2,3,4}  14  (4,1)
            {2,5}  18  (2,2,1)
          {1,2,5}  19  (8)
          {2,3,5}  22  (5,1)
        {1,2,3,5}  23  (9)
            {4,5}  24  (2,1,1,1)
          {1,4,5}  25  (3,3)
          {2,4,5}  26  (6,1)
        {1,2,4,5}  27  (2,2,2)
          {3,4,5}  28  (4,1,1)
        {2,3,4,5}  30  (3,2,1)
      {1,2,3,4,5}  31  (11)
            {1,6}  33  (5,2)
            {2,6}  34  (7,1)
          {1,2,6}  35  (4,3)
          {1,3,6}  37  (12)
          {2,3,6}  38  (8,1)
		

Crossrefs

Positions of even terms in A372428, zeros A372427.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372586.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is even.

A336321 a(n) = A122111(A225546(n)).

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 19, 6, 9, 11, 53, 10, 131, 23, 13, 8, 311, 15, 719, 22, 29, 59, 1619, 14, 49, 137, 21, 46, 3671, 17, 8161, 12, 61, 313, 37, 25, 17863, 727, 139, 26, 38873, 31, 84017, 118, 39, 1621, 180503, 20, 361, 77, 317, 274, 386093, 33, 71, 58, 733, 3673, 821641, 34, 1742537, 8167, 87, 18, 151, 67, 3681131, 626, 1627, 41, 7754077, 35, 16290047
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 17 2020

Keywords

Comments

A122111 and A225546 are both self-inverse permutations of the positive integers based on prime factorizations, and they share further common properties. For instance, they map the prime numbers to powers of 2: A122111 maps the k-th prime to 2^k, whereas A225546 maps it to 2^2^(k-1).
In composing these permutations, this sequence maps the squarefree numbers, as listed in A019565, to the prime numbers in increasing order; and the list of powers of 2 to the "normal" numbers (A055932), as listed in A057335.

Examples

			From _Peter Munn_, Jan 04 2021: (Start)
In this set of examples we consider [a(n)] as a function a(.) with an inverse, a^-1(.).
First, a table showing mapping of the powers of 2:
  n     a^-1(2^n) =    2^n =        a(2^n) =
        A001146(n-1)   A000079(n)   A057335(n)
  0             (1)         1            1
  1               2         2            2
  2               4         4            4
  3              16         8            6
  4             256        16            8
  5           65536        32           12
  6      4294967296        64           18
  ...
Next, a table showing mapping of the squarefree numbers, as listed in A019565 (a lexicographic ordering by prime factors):
  n   a^-1(A019565(n))   A019565(n)      a(A019565(n))   a^2(A019565(n))
      Cf. {A337533}      Cf. {A005117}   = prime(n)      = A033844(n-1)
  0              1               1             (1)               (1)
  1              2               2               2                 2
  2              3               3               3                 3
  3              8               6               5                 7
  4              6               5               7                19
  5             12              10              11                53
  6             18              15              13               131
  7            128              30              17               311
  8              5               7              19               719
  9             24              14              23              1619
  ...
As sets, the above columns are A337533, A005117, A008578, {1} U A033844.
Similarly, we get bijections between sets A000290\{0} -> {1} U A070003; and {1} U A335740 -> A005408 -> A066207.
(End)
		

Crossrefs

A122111 composed with A225546.
Cf. A336322 (inverse permutation).
Other sequences used in a definition of this sequence: A000040, A000188, A019565, A248663, A253550, A253560.
Sequences used to express relationship between terms of this sequence: A003159, A003961, A297002, A334747.
Cf. A057335.
A mapping between the binary tree sequences A334866 and A253563.
Lists of sets (S_1, S_2, ... S_j) related by the bijection defined by the sequence: (A000290\{0}, {1} U A070003), ({1} U A001146, A000079, A055932), ({1} U A335740, A005408, A066207), (A337533, A005117, A008578, {1} U A033844).

Formula

a(n) = A122111(A225546(n)).
Alternative definition: (Start)
Write n = m^2 * A019565(j), where m = A000188(n), j = A248663(n).
a(1) = 1; otherwise for m = 1, a(n) = A000040(j), for m > 1, a(n) = A253550^j(A253560(a(m))).
(End)
a(A000040(m)) = A033844(m-1).
a(A001146(m)) = 2^(m+1).
a(2^n) = A057335(n).
a(n^2) = A253560(a(n)).
For n in A003159, a(2n) = b(a(n)), where b(1) = 2, b(n) = A253550(n), n >= 2.
More generally, a(A334747(n)) = b(a(n)).
a(A003961(n)) = A297002(a(n)).
a(A334866(m)) = A253563(m).
Previous Showing 41-50 of 77 results. Next