cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 103 results. Next

A374251 Irregular triangle read by rows where row n is the run-compression of the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 5, 4, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 2, 2, 1, 1, 4, 1, 3, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 6, 5, 1, 4, 2, 4, 1, 3, 3, 2, 1, 3, 1, 2, 3, 1, 2, 4, 2, 3, 1, 2, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The standard compositions and their run-compressions begin:
   0: ()        --> ()
   1: (1)       --> (1)
   2: (2)       --> (2)
   3: (1,1)     --> (1)
   4: (3)       --> (3)
   5: (2,1)     --> (2,1)
   6: (1,2)     --> (1,2)
   7: (1,1,1)   --> (1)
   8: (4)       --> (4)
   9: (3,1)     --> (3,1)
  10: (2,2)     --> (2)
  11: (2,1,1)   --> (2,1)
  12: (1,3)     --> (1,3)
  13: (1,2,1)   --> (1,2,1)
  14: (1,1,2)   --> (1,2)
  15: (1,1,1,1) --> (1)
		

Crossrefs

Last column is A001511.
First column is A065120.
Row-lengths are A124767.
Using prime indices we get A304038, row-sums A066328.
Row n has A334028(n) distinct elements.
Rows are ranked by A373948 (standard order).
Row-sums are A373953.
A003242 counts run-compressed compositions, i.e., anti-runs, ranks A333489.
A007947 (squarefree kernel) represents run-compression of multisets.
A037201 run-compresses first differences of primes, halved A373947.
A066099 lists the parts of compositions in standard order.
A116861 counts partitions by sum of run-compression.
A238279 and A333755 count compositions by number of runs.
A373949 counts compositions by sum of run-compression, opposite A373951.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n]],{n,100}]

A382525 Number of times n appears in A048767 (rank of Look-and-Say partition of prime indices). Number of ordered set partitions whose block-sums are the prime signature of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 3, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2025

Keywords

Comments

The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. Hence, the multiplicity of k in the Look-and-Say partition of y is the sum of all parts that appear exactly k times. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also the number of ways to choose a set of disjoint strict integer partitions, one of each nonzero multiplicity in the prime factorization of n.

Examples

			The a(27) = 2 partitions with Look-and-Say partition (2,2,2) are: (3,3), (2,2,1,1).
The prime indices of 3456 are {1,1,1,1,1,1,1,2,2,2}, and the partitions with Look-and-Say partition (2,2,2,1,1,1,1,1,1,1) are:
  (7,3,3)
  (7,2,2,1,1)
  (6,3,3,1)
  (5,3,3,2)
  (4,3,3,2,1)
  (4,3,2,2,1,1)
so a(3456) = 6.
		

Crossrefs

Positions of positive terms are A351294, conjugate A381432.
Positions of 0 are A351295, conjugate A381433.
Positions of 1 are A381540, conjugate A381434.
Positions of terms > 1 are A381541, conjugate A381435.
Positions of first appearances are A382775.
A000670 counts ordered set partitions.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A381436 lists the section-sum partition of prime indices, ranks A381431.
A381440 lists the Look-and-Say partition of prime indices, ranks A048767.

Programs

  • Mathematica
    stp[y_]:=Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@y],UnsameQ@@Join@@#&];
    Table[Length[stp[Last/@FactorInteger[n]]],{n,100}]

Formula

a(2^n) = A000009(n).
a(prime(n)) = 1.

A381441 Number of multisets that can be obtained by partitioning the prime indices of n into a set of sets (set system) and taking their sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A050326 at a(210) = 13, A050326(210) = 15. This comes from the set systems {{3},{1,2,4}} and {{1,2},{3,4}}, and from {{4},{1,2,3}} and {{1,3},{2,4}}.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a strict factorization of n into squarefree numbers > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Sets of sets are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set of sets {1,1,2} -> {4}.

Examples

			The prime indices of 60 are {1,1,2,3}, with partitions into sets of sets:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
with block-sums: {1,6}, {3,4}, {1,2,4}, {1,3,3}, which are all different, so a(60) = 4.
		

Crossrefs

Before taking sums we had A050326, non-strict A050320.
Positions of 0 are A293243.
Positions of 1 are A293511.
This is the strict version of A381078 (lower A381454).
For distinct block-sums (instead of blocks) we have A381634, before sums A381633.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For sets of constant multisets (A050361) see A381715.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
More on set systems: A050342, A116539, A279785, A296120, A318361.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Union[Sort[Total/@prix/@#]&/@Select[facs[n],UnsameQ@@#&&And@@SquareFreeQ/@#&]]],{n,100}]

Formula

a(A002110(n)) = A066723(n).

A381078 Number of multisets that can be obtained by partitioning the prime indices of n into a multiset of sets (set multipartition) and taking their sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 2, 1, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2025

Keywords

Comments

First differs from A050320 at a(210) = 13, A050320(210) = 15. This comes from the set multipartitions {{3},{1,2,4}} and {{1,2},{3,4}}, and from {{4},{1,2,3}} and {{1,3},{2,4}}.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into squarefree numbers > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set multipartition {1,1,2} -> {4}.

Examples

			The prime indices of 60 are {1,1,2,3}, with set multipartitions:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
  {{1},{1},{2},{3}}
with block-sums: {1,6}, {3,4}, {1,1,5}, {1,2,4}, {1,3,3}, {1,1,2,3}, which are all different multisets, so a(60) = 6.
		

Crossrefs

Before taking sums we had A050320, strict A050326 (zeros A293243), distinct sums A381633.
For distinct blocks we have A381441.
The lower version is A381454.
For distinct block-sums we have A381634.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For sets of constant multisets (A050361) see A381717.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sqfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Union[Sort[hwt/@#]&/@sqfacs[n]]],{n,100}]

Formula

a(A002110(n)) = A066723(n).

A114638 Number of partitions of n such that number of parts is equal to the sum of parts counted without multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 1, 0, 2, 2, 3, 5, 5, 6, 9, 7, 8, 14, 12, 16, 21, 28, 32, 43, 47, 61, 68, 84, 89, 109, 126, 140, 170, 198, 227, 261, 323, 362, 427, 501, 581, 658, 794, 880, 1036, 1175, 1355, 1526, 1776, 1985, 2281, 2588, 2943, 3312, 3799, 4271, 4852, 5497
Offset: 0

Views

Author

Vladeta Jovovic, Feb 18 2006

Keywords

Comments

The Heinz numbers of these integer partitions are given by A324570. - Gus Wiseman, Mar 09 2019

Examples

			a(10) = 3 because we have [5,1,1,1,1,1], [3,3,3,1] and [3,2,2,1,1,1].
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(1) = 1 through a(12) = 5 integer partitions (empty columns not shown):
  1  22   221  3111  3311   333     3331    32222    33222
     211             41111  321111  322111  44111    322221
                                    511111  322211   332211
                                            332111   4221111
                                            4211111  6111111
(End)
		

Crossrefs

Cf. A003114, A006141, A039900, A047993, A064174, A066328, A243149 (the same for compositions).
Cf. A116861 (number of partitions of n having a given sum of distinct parts).

Programs

  • Maple
    a:=proc(n) local P,c,j,S: with(combinat): P:=partition(n): c:=0: for j from 1 to nops(P) do S:=convert(P[j],set): if nops(P[j])=sum(S[i],i=1..nops(S)) then c:=c+1 else c:=c fi: c: od: end: seq(a(n), n=0..35); # Emeric Deutsch, Mar 01 2006
  • Mathematica
    a[n_] := Module[{P, c, j, S}, P = IntegerPartitions[n]; c = 0; For[j = 1, j <= Length[P], j++, S = Union[P[[j]]]; If[Length[P[[j]]] == Total[S],  c++] ]; c];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 07 2018, after Emeric Deutsch *)
  • PARI
    apply( A114638(n,s=0)={forpart(p=n,#p==vecsum(Set(p))&&s++); s}, [0..50]) \\ M. F. Hasler, Oct 27 2019

Extensions

More terms from Emeric Deutsch, Mar 01 2006

A374706 Sum of minima of the maximal strictly increasing runs in the weakly increasing prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 1, 4, 3, 4, 1, 5, 2, 6, 1, 2, 4, 7, 3, 8, 2, 2, 1, 9, 3, 6, 1, 6, 2, 10, 1, 11, 5, 2, 1, 3, 4, 12, 1, 2, 3, 13, 1, 14, 2, 4, 1, 15, 4, 8, 4, 2, 2, 16, 5, 3, 3, 2, 1, 17, 2, 18, 1, 4, 6, 3, 1, 19, 2, 2, 1, 20, 5, 21, 1, 5, 2, 4, 1, 22, 4, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 540 are {1,1,2,2,2,3}, with strictly increasing runs ({1},{1,2},{2},{2,3}), with minima (1,1,2,2), summing to a(540) = 6.
		

Crossrefs

For leaders of constant runs we have A066328.
A version for compositions is A374684, row-sums of A374683 (length A124768).
Row-sums of A375128.
For length instead of sum we have A375136.
A055887 counts sequences of partitions with total sum n.
A112798 lists prime indices:
- length A001222, distinct A001221
- leader A055396
- sum A056239
- reverse A296150

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[First/@Split[prix[n],Less]],{n,100}]

A280292 a(n) = sopfr(n) - sopf(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 4, 3, 0, 0, 2, 0, 0, 0, 6, 0, 3, 0, 2, 0, 0, 0, 4, 5, 0, 6, 2, 0, 0, 0, 8, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 3, 0, 0, 6, 7, 5, 0, 2, 0, 6, 0, 4, 0, 0, 0, 2, 0, 0, 3, 10, 0, 0, 0, 2, 0, 0, 0, 7, 0, 0, 5, 2, 0, 0, 0, 6, 9, 0, 0, 2, 0, 0, 0, 4, 0, 3, 0, 2, 0, 0, 0, 8, 0, 7, 3, 7, 0, 0, 0, 4, 0
Offset: 1

Views

Author

Michel Marcus, Dec 31 2016

Keywords

Comments

Alladi and Erdős (1977) proved that for all numbers m>=0, m!=1, the sequence of numbers k such that a(k) = m has a positive asymptotic density which is equal to a rational multiple of 1/zeta(2) = 6/Pi^2 (A059956). For example, when m=0, the sequence is the squarefree numbers (A005117), whose density is 6/Pi^2, and when m=2 the sequence is A081770, whose density is 1/Pi^2. - Amiram Eldar, Nov 02 2020
Sum of prime factors minus sum of distinct prime factors. Counting partitions by this statistic (sum minus sum of distinct parts) gives A364916. - Gus Wiseman, Feb 21 2025

References

  • Jean-Marie De Koninck and Aleksandar Ivić, Topics in Arithmetical Functions: Asymptotic Formulae for Sums of Reciprocals of Arithmetical Functions and Related Fields, Amsterdam, Netherlands: North-Holland, 1980. See pp. 164-166.
  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 165.

Crossrefs

A multiplicative version is A003557, firsts A064549 (sorted A001694).
For length instead of sum we have A046660.
For product instead of sum we have A066503, firsts A381076.
Positions of first appearances are A280286 (sorted A381075).
For indices instead of factors we have A380955, firsts A380956 (sorted A380957).
For exponents instead of factors we have A380958, firsts A380989.
A000040 lists the primes, differences A001223.
A001222 counts prime factors (distinct A001221).
A003963 gives product of prime indices, distinct A156061, excess A380986.
A005117 lists squarefree numbers, complement A013929.
A007947 gives squarefree kernel.
A020639 gives least prime factor (index A055396), greatest A061395 (index A006530).
A027746 lists prime factors, distinct A027748.
A112798 lists prime indices (sum A056239), distinct A304038 (sum A066328).

Programs

  • Mathematica
    Array[Total@ # - Total@ Union@ # &@ Flatten[ConstantArray[#1, #2] & @@@ FactorInteger@ #] &, 105] (* Michael De Vlieger, Feb 25 2019 *)
  • PARI
    sopfr(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]*f[j, 2]);
    sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]);
    a(n) = sopfr(n) - sopf(n);

Formula

a(n) = A001414(n) - A008472(n).
a(A005117(n)) = 0.
a(n) = A001414(A003557(n)). - Antti Karttunen, Oct 07 2017
Additive with a(1) = 0 and a(p^e) = p*(e-1) for prime p and e > 0. - Werner Schulte, Feb 24 2019
From Amiram Eldar, Nov 02 2020: (Start)
a(n) = a(A057521(n)).
Sum_{n<=x} a(n) ~ x*log(log(x)) + O(x) (Alladi and Erdős, 1977).
Sum_{n<=x, n nonsquarefree} 1/a(n) ~ c*x + O(sqrt(x)*log(x)), where c = Integral_{t=0..1} (F(t)-6/Pi^2)/t dt, and F(t) = Product_{p prime} (1-1/p)*(1-1/(t^p - p)) (De Koninck et al., 1981; Finch, 2018), or, equivalently c = Sum_{k>=2} d(k)/k = 0.1039..., where d(k) = (6/Pi^2)*A338559(k)/A338560(k) is the asymptotic density of the numbers m with a(m) = k (Alladi and Erdős, 1977; Ivić, 2003). (End)

Extensions

More terms from Antti Karttunen, Oct 07 2017

A136565 a(n) = sum of the distinct values making up the exponents in the prime-factorization of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 4, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 6, 1, 3, 3, 2, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Leroy Quet, Jan 07 2008

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 13, 192, 2089, 21405, 215730, 2162136, 21636277, 216410510, 2164253043, 21642998932, ... . Apparently, the asymptotic mean of this sequence is 2.164... . - Amiram Eldar, Jun 30 2025

Examples

			120 = 2^3 * 3^1 * 5^1. The exponents of the prime factorization are therefore 3,1,1. The distinct values which equal these exponents are 1 and 3. So a(120) = 1+3 = 4.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[Total[Union[Transpose[FactorInteger[n]][[2]]]],{n,2,110}]] (* Harvey P. Dale, Jun 23 2013 *)
  • PARI
    A136565(n) = vecsum(apply(primepi,factor(factorback(apply(e->prime(e),(factor(n)[,2]))))[,1])); \\ Antti Karttunen, Sep 06 2018

Formula

a(n) = A088529(n) = A181591(n) for n: 2 <= n < 24. - Reinhard Zumkeller, Nov 01 2010
a(n) = A066328(A181819(n)). - Antti Karttunen, Sep 06 2018

Extensions

More terms from Diana L. Mecum, Jul 17 2008

A364911 Triangle read by rows where T(n,k) is the number of integer partitions with sum <= n and with distinct parts summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 2, 3, 2, 1, 5, 2, 5, 3, 3, 1, 6, 3, 8, 4, 4, 4, 1, 7, 3, 11, 6, 6, 6, 5, 1, 8, 4, 14, 9, 8, 10, 7, 6, 1, 9, 4, 19, 11, 11, 14, 11, 9, 8, 1, 10, 5, 23, 14, 15, 21, 15, 14, 11, 10, 1, 11, 5, 28, 17, 19, 28, 22, 20, 17, 15, 12
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2023

Keywords

Comments

Also the number of ways to write any number up to n as a positive linear combination of a strict integer partition of k.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  1  3  1  2
  1  4  2  3  2
  1  5  2  5  3  3
  1  6  3  8  4  4  4
  1  7  3 11  6  6  6  5
  1  8  4 14  9  8 10  7  6
  1  9  4 19 11 11 14 11  9  8
  1 10  5 23 14 15 21 15 14 11 10
  1 11  5 28 17 19 28 22 20 17 15 12
  1 12  6 34 21 22 40 28 28 24 24 17 15
  1 13  6 40 25 27 50 38 37 34 35 27 22 18
  1 14  7 46 29 32 65 49 50 43 51 38 35 26 22
  1 15  7 54 33 38 79 62 63 59 68 55 50 41 32 27
Row n = 5 counts the following partitions:
    .    1           2     3         4       5
         1+1         2+2   1+2       1+3     1+4
         1+1+1             1+1+2     1+1+3   2+3
         1+1+1+1           1+1+1+2
         1+1+1+1+1         1+2+2
Row n = 5 counts the following positive linear combinations:
  .  1*1  1*2  1*3      1*4      1*5
     2*1  2*2  1*2+1*1  1*3+1*1  1*3+1*2
     3*1       1*2+2*1  1*3+2*1  1*4+1*1
     4*1       1*2+3*1
     5*1       2*2+1*1
		

Crossrefs

Column n = k is A000009.
Column k = 0 is A000012.
Column k = 1 is A000027.
Row sums are A000070.
Column k = 2 is A008619.
Columns are partial sums of columns of A116861.
Column k = 3 appears to be the partial sums of A137719.
Diagonal n = 2k is A364910.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A114638 counts partitions where (length) = (sum of distinct parts).
A116608 counts partitions by number of distinct parts.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[Array[IntegerPartitions,n+1,0,Join],Total[Union[#]]==k&]],{n,0,9},{k,0,n}]
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(prod(k=1, n, 1 - y^k + y^k/(1 - x^k), 1/(1 - x) + O(x*x^n)))]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024

Formula

G.f.: A(x,y) = (1/(1 - x)) * Product_{k>=1} (1 - y^k + y^k/(1 - x^k)). - Andrew Howroyd, Jan 11 2024

A375128 Irregular triangle read by rows where row n lists the minima of maximal strictly increasing runs in the weakly increasing prime indices of n.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 4, 1, 1, 1, 2, 2, 1, 5, 1, 1, 6, 1, 2, 1, 1, 1, 1, 7, 1, 2, 8, 1, 1, 2, 1, 9, 1, 1, 1, 3, 3, 1, 2, 2, 2, 1, 1, 10, 1, 11, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 12, 1, 2, 1, 1, 1, 13, 1, 14, 1, 1, 2, 2, 1, 15, 1, 1, 1, 1, 4, 4, 1, 3, 2, 1, 1, 16
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The minima of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The prime indices of 540 are {1,1,2,2,2,3}, with strictly increasing runs ({1},{1,2},{2},{2,3}), with minima (1,1,2,2), which is row 540.
Triangle begins:
   1:
   2:  1
   3:  2
   4:  1  1
   5:  3
   6:  1
   7:  4
   8:  1  1  1
   9:  2  2
  10:  1
  11:  5
  12:  1  1
  13:  6
  14:  1
  15:  2
  16:  1  1  1  1
		

Crossrefs

Row-minima are A055396.
Row-sums are A374706.
Row-lengths are A375136.
For leaders of constant runs we have A304038, row-sums A066328.
For compositions we have A374683, row-sums of A374684 (length A124768).
A112798 lists prime indices:
- length A001222, distinct A001221
- leader A055396
- sum A056239
- reverse A296150

Programs

  • Mathematica
    Table[If[n==1,{},First/@Split[Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]],Less]],{n,100}]
Previous Showing 11-20 of 103 results. Next