cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A155923 Positive numbers y such that y^2 is of the form x^2+(x+17)^2 with integer x.

Original entry on oeis.org

13, 17, 25, 53, 85, 137, 305, 493, 797, 1777, 2873, 4645, 10357, 16745, 27073, 60365, 97597, 157793, 351833, 568837, 919685, 2050633, 3315425, 5360317, 11951965, 19323713, 31242217, 69661157, 112626853, 182092985, 406014977, 656437405
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

(-5,a(1)) and (A118120(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+17)^2 = y^2. (Offset 1 is assumed for A118120.)
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (19+6*sqrt(2))/17 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (387+182*sqrt(2))/17^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2*m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. [From Mohamed Bouhamida, Sep 09 2009]

Examples

			(-5,a(1)) = (-5,13) is a solution: (-5)^2+(-5+17)^2 = 25+144 = 169 = 13^2;
(A118120(1), a(2)) = (0, 17) is a solution: 0^2+(0+17)^2 = 289 = 17^2;
(A118120(2), a(3)) = (7, 25) is a solution: 7^2+(7+17)^2 = 49+576 = 625 = 25^2.
		

Crossrefs

Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).
Cf. A156156 (first trisection), A156157 (second trisection), A156158 (third trisection).

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{13,17,25,53,85,137},50] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    {forstep(n=-5, 660000000, [1,3], if(issquare(2*n*(n+17)+289, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1) = 13, a(2) = 17, a(3) = 25, a(4) = 53, a(5) = 85, a(6) = 137.
G.f.: x*(1-x)*(13+30*x+55*x^2+30*x^3+13*x^4)/(1-6*x^3+x^6).

Extensions

G.f. corrected, first and fourth comment and examples edited, cross-reference added by Klaus Brockhaus, Sep 22 2009

A091176 Numbers n such that prime(n) is of the form 2*k^2 - 1.

Original entry on oeis.org

4, 7, 11, 20, 25, 31, 46, 53, 68, 87, 106, 118, 152, 163, 190, 204, 247, 344, 377, 418, 436, 474, 492, 516, 558, 580, 647, 669, 713, 816, 894, 975, 1003, 1028, 1179, 1300, 1392, 1526, 1561, 1695, 1768, 1917, 1952, 2069, 2177, 2343, 2601, 2643, 2769, 2812
Offset: 1

Views

Author

Ray Chandler, Dec 25 2003

Keywords

Comments

A066436 indexed by A000040.

Crossrefs

Programs

Formula

A000040(n) = A066436(n).

A129991 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+241)^2 = y^2.

Original entry on oeis.org

0, 23, 620, 723, 840, 4223, 4820, 5499, 25200, 28679, 32636, 147459, 167736, 190799, 860036, 978219, 1112640, 5013239, 5702060, 6485523, 29219880, 33234623, 37800980, 170306523, 193706160, 220320839, 992619740, 1129002819, 1284124536, 5785412399, 6580311236
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 14 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+241, y).
Corresponding values y of solutions (x, y) are in A159565.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (243+22*sqrt(2))/241 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (137283+87958*sqrt(2))/241^2 for n mod 3 = 0.

Crossrefs

Cf. A159565, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159566 (decimal expansion of (243+22*sqrt(2))/241), A159567 (decimal expansion of (137283+87958*sqrt(2))/241^2).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 23, 620, 723, 840, 4223, 4820}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2012 *)
  • PARI
    {forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+482*n+58081), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+482 for n > 6; a(1)=0, a(2)=23, a(3)=620, a(4)=723, a(5)=840, a(6)=4223.
G.f.: x*(23+597*x+103*x^2-21*x^3-199*x^4-21*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 241*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 16 2009

A130004 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+449)^2 = y^2.

Original entry on oeis.org

0, 31, 1204, 1347, 1504, 8151, 8980, 9891, 48600, 53431, 58740, 284347, 312504, 343447, 1658380, 1822491, 2002840, 9666831, 10623340, 11674491, 56343504, 61918447, 68045004, 328395091, 360888240, 396596431, 1914027940, 2103411891, 2311534480, 11155773447
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+449, y).
Corresponding values y of solutions (x, y) are in A159589.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (451+30*sqrt(2))/449 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (507363+329222*sqrt(2))/449^2 for n mod 3 = 0.

Crossrefs

Cf. A159589, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159590 (decimal expansion of (451+30*sqrt(2))/449), A159591 (decimal expansion of (507363+329222*sqrt(2))/449^2).

Programs

  • Magma
    I:=[0, 31, 1204, 1347, 1504, 8151, 8980]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 08 2018
  • Mathematica
    LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 31, 1204, 1347, 1504, 8151, 8980}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2012 *)
  • PARI
    {forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+898*n+201601), print1(n, ",")))}
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(31+1173*x+143*x^2-29*x^3-391*x^4 -29*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, May 08 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) +898 for n > 6; a(1)=0, a(2)=31, a(3)=1204, a(4)=1347, a(5)=1504, a(6)=8151.
G.f.: x*(31+1173*x+143*x^2-29*x^3-391*x^4-29*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 449*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 17 2009

A130013 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+647)^2 = y^2.

Original entry on oeis.org

0, 37, 1768, 1941, 2128, 11937, 12940, 14025, 71148, 76993, 83316, 416245, 450312, 487165, 2427616, 2626173, 2840968, 14150745, 15308020, 16559937, 82478148, 89223241, 96519948, 480719437, 520032720, 562561045, 2801839768, 3030974373
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+647, y).
Corresponding values y of solutions (x, y) are in A159641.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (649+36*sqrt(2))/647 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1084467+707402*sqrt(2))/647^2 for n mod 3 = 0.

Crossrefs

Cf. A159641, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159642 (decimal expansion of (649+36*sqrt(2))/647), A159643 (decimal expansion of (1084467+707402*sqrt(2))/647^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,37,1768,1941,2128,11937,12940},40] (* Harvey P. Dale, Jan 27 2025 *)
  • PARI
    {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+1294*n+418609), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1294 for n > 6; a(1)=0, a(2)=37, a(3)=1768, a(4)=1941, a(5)=2128, a(6)=11937.
G.f.: x*(37+1731*x+173*x^2-35*x^3-577*x^4-35*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 647*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 21 2009

A130017 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+967)^2 = y^2.

Original entry on oeis.org

0, 45, 2688, 2901, 3128, 18105, 19340, 20657, 107876, 115073, 122748, 631085, 673032, 717765, 3680568, 3925053, 4185776, 21454257, 22879220, 24398825, 125046908, 133352201, 142209108, 728829125, 777235920, 828857757, 4247929776
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+967, y).
Corresponding values y of solutions (x, y) are in A159701.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (969+44**sqrt(2))/967 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (2487411+1629850*sqrt(2))/967^2 for n mod 3 = 0.

Crossrefs

Cf. A159701, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159702 (decimal expansion of (969+44**sqrt(2))/967), A159703 (decimal expansion of (2487411+1629850*sqrt(2))/967^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,45,2688,2901,3128,18105,19340},40] (* Harvey P. Dale, Nov 03 2013 *)
  • PARI
    {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+1934*n+935089), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1934 for n > 6; a(1)=0, a(2)=45, a(3)=2688, a(4)=2901, a(5)=3128, a(6)=18105.
G.f.: x*(45+2643*x+213*x^2-43*x^3-881*x^4-43*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 967*A001652(k) for k >= 0.
a(1)=0, a(2)=45, a(3)=2688, a(4)=2901, a(5)=3128, a(6)=18105, a(7)=19340, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7). - Harvey P. Dale, Nov 03 2013

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 21 2009

A143829 Numbers n such that 10n^2 - 1 is prime.

Original entry on oeis.org

3, 6, 9, 12, 21, 30, 33, 36, 45, 48, 60, 69, 72, 75, 81, 87, 99, 108, 111, 114, 117, 120, 123, 126, 129, 153, 165, 168, 174, 177, 183, 201, 204, 207, 222, 234, 243, 252, 267, 279, 282, 285, 294, 303, 312, 315, 318, 339, 345, 348, 369, 378, 381, 384, 393, 396
Offset: 1

Views

Author

Artur Jasinski, Sep 02 2008

Keywords

Crossrefs

Programs

  • Mathematica
    p = 10; a = {}; Do[k = p x^2 - 1; If[PrimeQ[k], AppendTo[a, x]], {x, 1, 1000}]; a
    Select[Range[500],PrimeQ[10#^2-1]&] (* Harvey P. Dale, Nov 11 2020 *)
  • PARI
    is(n)=isprime(10*n^2-1) \\ Charles R Greathouse IV, Feb 17 2017

A090697 Numbers n such that n^2/2 - 1 is a prime.

Original entry on oeis.org

4, 6, 8, 12, 14, 16, 20, 22, 26, 30, 34, 36, 42, 44, 48, 50, 56, 68, 72, 76, 78, 82, 84, 86, 90, 92, 98, 100, 104, 112, 118, 124, 126, 128, 138, 146, 152, 160, 162, 170, 174, 182, 184, 190, 196, 204, 216, 218, 224, 226, 230, 236, 250, 252, 254, 264, 268, 274, 280
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 20 2003

Keywords

Comments

A066436 gives resulting primes p such that 2p+2 is square. - Ray Chandler, Dec 25 2003

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

Programs

  • Mathematica
    Select[Range[2,300,2],PrimeQ[#^2/2-1]&] (* Harvey P. Dale, Apr 05 2014 *)
  • PARI
    isok(n) = !(n % 2) && isprime(n^2/2 - 1); \\ Michel Marcus, Jul 23 2016

Formula

a(n) = 2*A066049(n) = A110558(n)/2. - Ray Chandler, Dec 25 2003

Extensions

Corrected and extended by Ray Chandler, Dec 25 2003

A110558 Numbers n such that (n^2-8)/8 is prime.

Original entry on oeis.org

8, 12, 16, 24, 28, 32, 40, 44, 52, 60, 68, 72, 84, 88, 96, 100, 112, 136, 144, 152, 156, 164, 168, 172, 180, 184, 196, 200, 208, 224, 236, 248, 252, 256, 276, 292, 304, 320, 324, 340, 348, 364, 368, 380, 392, 408, 432, 436, 448, 452, 460, 472, 500, 504, 508
Offset: 1

Views

Author

Pierre CAMI, Sep 12 2005

Keywords

Comments

These numbers need to be of the form 4*j then (16*j^2-8)/8 = 2*j^2-1.
A066436 gives resulting primes p such that 8p+8 is square. - Ray Chandler, Sep 15 2005

Crossrefs

Programs

Formula

a(n) = 2*A090697(n) = 4*A066049(n). - Ray Chandler, Sep 15 2005

Extensions

Extended by Ray Chandler, Sep 15 2005

A129999 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+337)^2 = y^2.

Original entry on oeis.org

0, 27, 888, 1011, 1148, 6027, 6740, 7535, 35948, 40103, 44736, 210335, 234552, 261555, 1226736, 1367883, 1525268, 7150755, 7973420, 8890727, 41678468, 46473311, 51819768, 242920727, 270867120, 302028555, 1415846568, 1578730083
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 15 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+337, y).
Corresponding values y of solutions (x, y) are in A159574.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (339+26*sqrt(2))/337 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (278307+179662*sqrt(2))/337^2 for n mod 3 = 0.

Crossrefs

Cf. A159574, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159575 (decimal expansion of (339+26*sqrt(2))/337), A159576 (decimal expansion of (278307+179662*sqrt(2))/337^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,27,888,1011,1148,6027,6740},40] (* Harvey P. Dale, Feb 26 2015 *)
  • PARI
    {forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+674*n+113569), print1(n, ",")))}

Formula

a(n)=6*a(n-3)-a(n-6)+674 for n > 6; a(1)=0, a(2)=27, a(3)=888, a(4)=1011, a(5)=1148, a(6)=6027.
G.f.: x*(27+861*x+123*x^2-25*x^3-287*x^4-25*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 337*A001652(k) for k >= 0.
a(0)=0, a(1)=27, a(2)=888, a(3)=1011, a(4)=1148, a(5)=6027, a(6)=6740, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7). - Harvey P. Dale, Feb 26 2015

Extensions

Edited and two terms added by Klaus Brockhaus, Apr 16 2009
Previous Showing 11-20 of 47 results. Next