cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A339771 a(n) = Sum_{i=0..n} Sum_{j=0..n} 2^max(i,j).

Original entry on oeis.org

1, 7, 27, 83, 227, 579, 1411, 3331, 7683, 17411, 38915, 86019, 188419, 409603, 884739, 1900547, 4063235, 8650755, 18350083, 38797315, 81788931, 171966467, 360710147, 754974723, 1577058307, 3288334339, 6845104131, 14227079171, 29527900163, 61203283971
Offset: 0

Views

Author

Bernard Schott, Dec 16 2020

Keywords

Examples

			a(3) = 5*2^4 + 3 = 83.
		

References

  • Eric Billault, Walter Damin, Robert Ferréol, Rodolphe Garin, MPSI Classes Prépas - Khôlles de Maths, Exercices corrigés, Ellipses, 2012, exercice 2.22 (2), pp. 26, 43-44.

Crossrefs

Cf. A142964 (with min instead of max).
Partial sums of A014480.

Programs

  • Maple
    seq((2*n-1)*2^(n+1)+3,n=0..40);
  • Mathematica
    Table[(2*n - 1)*2^(n + 1) + 3, {n, 0, 29}] (* Amiram Eldar, Dec 16 2020 *)
  • PARI
    a(n) = sum(i=0, n, sum(j=0, n, 2^max(i,j))); \\ Michel Marcus, Dec 16 2020
    
  • Python
    def A339771():
        a, b, c = 1, 7, 27
        yield(a); yield(b)
        while True:
            yield c
            z = 4*a - 8*b + 5*c
            a, b, c = b, c, z
    a = A339771()
    print([next(a) for  in range(30)]) # _Peter Luschny, Dec 17 2020

Formula

a(n) = (2*n-1) * 2^(n+1) + 3.
G.f.: -(2*x+1)/((x-1)*(2*x-1)^2). - Alois P. Heinz, Dec 16 2020
E.g.f: 3*exp(x) + 2*exp(2*x)*(4*x - 1). - Stefano Spezia, Dec 16 2020
a(n) = 2*A066524(n+1) - A142964(n). - Kevin Ryde, Dec 17 2020
a(n) = (2*A027981(n)+1)/3 for n >= 1. - Hugo Pfoertner, Dec 17 2020

A363789 a(n) is the smallest primitive binary Niven number (A363787) whose binary representation is ending with n zeros.

Original entry on oeis.org

1, 6, 60, 2040, 1048560, 137438953440, 1180591620717411303360, 43556142965880123323311949751266331066240, 29642774844752946028434172162224104410437116074403984394101141506025761187823360
Offset: 0

Views

Author

Amiram Eldar, Jun 22 2023

Keywords

Comments

The least term k of A363787 such that A007814(k) = n.
Also, the least binary Niven number (A049445) with a binary weight (A000120) that equals 2^n.
The next term, a(9) = 6.864... * 10^156, is too long to include in the Data section.

Crossrefs

Subsequence of A049445, A143115 and A363787.
Cf. A000120, A007814, A066524, A358256 (decimal analog).

Programs

  • Mathematica
    a[n_] := (2^(2^n)-1) * 2^n; Array[a, 9, 0]
  • PARI
    a(n) = (2^(2^n)-1) * 2^n;

Formula

a(n) = (2^(2^n)-1) * 2^n = A066524(2^n).
a(n) = A143115(2^n).

A135065 A127733 * A007318 as infinite lower triangular matrices.

Original entry on oeis.org

1, 4, 4, 9, 18, 9, 16, 48, 48, 16, 25, 100, 150, 100, 25, 36, 180, 360, 360, 180, 36, 49, 294, 735, 980, 735, 294, 49, 64, 448, 1344, 2240, 2240, 1344, 448, 64, 81, 648, 2268, 4536, 5670, 4536, 2268, 648, 81, 100, 900, 3600, 8400, 12600, 12600, 8400, 3600
Offset: 0

Views

Author

Gary W. Adamson, Nov 16 2007

Keywords

Comments

A135065 * [1/1, 1/2, 1/3, ...] = A066524: (1, 6, 21, 60, 155, ...).
Triangle T(n,k), 0 <= k <= n, read by rows, given by (4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 27 2011

Examples

			First few rows of the triangle:
   1;
   4,   4;
   9,  18,   9;
  16,  48,  48,  16;
  25, 100, 150, 100,  25;
  36, 180, 360, 360, 180,  36;
  49, 294, 735, 980, 735, 294,  49;
		

Crossrefs

Cf. A000290, A127733, A066524, A014477 (row sums), A084938.

Programs

  • Maple
    with(combstruct):for n from 0 to 11 do seq(n*m*count(Combination(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    Flatten[Table[Binomial[n,k](n+1)^2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 12 2013 *)

Formula

T(n,k) = binomial(n,k)*(n+1)^2 = A007318(n,k)*A000290(n+1). - Philippe Deléham, Oct 27 2011
T(n-1,k-1) = Sum_{i=-k..k} (-1)^i*(k^2-i^2)*binomial(n,k+i)*binomial(n,k-i). - Mircea Merca, Apr 05 2012
G.f.: (-1 - x - x*y)/(x + x*y - 1)^3. - R. J. Mathar, Aug 12 2015

Extensions

Corrected by Zerinvary Lajos, Apr 09 2008

A144066 T(n, k) is the number of order-preserving partial transformations (of an n-element chain) of height k (height(alpha) = |Im(alpha)|); triangle T read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 21, 15, 1, 1, 60, 102, 28, 1, 1, 155, 490, 310, 45, 1, 1, 378, 1935, 2220, 735, 66, 1, 1, 889, 6741, 12285, 7315, 1491, 91, 1
Offset: 0

Views

Author

Abdullahi Umar, Sep 09 2008

Keywords

Comments

T(n, k) is also the number of elements in the Green's J-classes of the monoid of order-preserving partial transformations (of an n-element chain). Sum of rows of T(n, k) is A123164.

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,   1;
  1,   6,    1;
  1,  21,   15,     1;
  1,  60,  102,    28,    1;
  1, 155,  490,   310,   45,    1;
  1, 378, 1935,  2220,  735,   66,  1;
  1, 889, 6741, 12285, 7315, 1491, 91, 1;
  ...
T(2,1) = 6 because there are exactly 6 order-preserving partial transformations (on a 2-element chain) of height 1, namely: (1)->(1), (1)->(2), (2)->(1), (2)->(2), (1,2)->(1,1), and (1,2)->(2,2) -- the mappings are coordinate-wise.
		

Crossrefs

Formula

T(n,k) = C(n,k)*A112857(n,k) for 0 <= k <= n.
C(n-1,k-1)*T(n,k) = 2((n-k+1)/(n-k))*T(n-1,k) + C(n,k)*T(n-1,k-1). [This is wrong.]
From Petros Hadjicostas, Feb 14 2021: (Start)
T(n,k) = 2*n*T(n-1,k)/(n-k) + n*T(n-1,k-1)/k for 1 <= k <= n-1 with T(n,0) = T(n,n) = 1 for n >= 0.
T(n,1) = n*(2^n - 1) = A066524(n) for n >= 1.
T(n,n-1) = n*(2*n - 1) = A000384(n) for n >= 1.
T(n,n-2) = A076454(n-1) for n >= 2. (End)

A372311 Triangle read by rows: T(n, k) = n^k * Sum_{j=0..n} binomial(n - j, n - k) * Eulerian1(n, j).

Original entry on oeis.org

1, 1, 1, 1, 6, 8, 1, 21, 108, 162, 1, 60, 800, 3840, 6144, 1, 155, 4500, 48750, 225000, 375000, 1, 378, 21672, 453600, 4354560, 19595520, 33592320, 1, 889, 94668, 3500658, 60505200, 536479440, 2371803840, 4150656720
Offset: 0

Views

Author

Peter Luschny, Apr 26 2024

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1,   1;
  [2] 1,   6,     8;
  [3] 1,  21,   108,     162;
  [4] 1,  60,   800,    3840,     6144;
  [5] 1, 155,  4500,   48750,   225000,    375000;
  [6] 1, 378, 21672,  453600,  4354560,  19595520,   33592320;
  [7] 1, 889, 94668, 3500658, 60505200, 536479440, 2371803840, 4150656720;
		

Crossrefs

Cf. A061711 (main diagonal), A066524 (column 1), A372312 (row sums).
Cf. A163626, A173018 (eulerian1).

Programs

  • Maple
    S := (n, k) -> local j; add(eulerian1(n, j)*binomial(n-j, n-k), j = 0..n):
    row := n -> local k; seq(S(n, k) * n^k, k = 0..n):
    seq(row(n), n = 0..8);
  • SageMath
    def A372311_row(n) :
        x = polygen(ZZ, 'x')
        A = []
        for m in range(0, n + 1, 1) :
            A.append((-x)^m)
            for j in range(m, 0, -1):
                A[j - 1] = j * (A[j - 1] - A[j])
        return [n^k*c for k, c in enumerate(A[0])]
    for n in (0..7) : print(A372311_row(n))

A363849 Triangular array read by rows. T(n,k) is the number of Green's H-classes of rank k in the semigroup of partial transformations, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 21, 18, 1, 1, 60, 150, 40, 1, 1, 155, 900, 650, 75, 1, 1, 378, 4515, 7000, 2100, 126, 1, 1, 889, 20286, 59535, 36750, 5586, 196, 1, 1, 2040, 84700, 435120, 486570, 148176, 12936, 288, 1, 1, 4599, 335880, 2864820, 5358150, 2876202, 493920, 27000, 405, 1
Offset: 0

Views

Author

Geoffrey Critzer, Jun 24 2023

Keywords

Comments

Let H_f denote the H-class in the semigroup of partial transformations containing f. Then H_f contains an idempotent iff the image of f is a transversal for the kernel of f.
Let H_f ~ H_g iff the image of f is contained in the image of g and the kernel of f is more coarse than the kernel of g. Then ~ is a partial order on the H-classes, hence a preorder (quasi-order) on the semigroup. The poset is isomorphic to the Segre product of the Boolean lattice of rank n and the partition lattice of [n+1].

Examples

			Triangle begins:
 1;
 1,   1;
 1,   6,   1;
 1,  21,  18,   1;
 1,  60, 150,  40,  1;
 1, 155, 900, 650, 75, 1;
 ...
		

References

  • O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, Chapter 4.4 - 4.6.

Crossrefs

Columns k=0-1 give: A000012, A066524.
Row sums give A134055(n+1).
T(n,n-1) gives A002411.

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*Stirling2(n+1, k+1):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Table[Binomial[n, k] StirlingS2[n + 1, k + 1], {k, 0, n}], {n,0, 5}] // Grid

Formula

T(n,k) = A007318(n,k)*A008277(n+1,k+1).
Sum_{k=0..n} T(n,k)*k! = (n+1)^n = A000169(n+1).
T(n,1) = A101818(n,1) = A066524(n) = n*(2^n - 1). (Every partial function of rank 1 is idempotent.)
Previous Showing 11-16 of 16 results.