cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A114274 Numbers k such that k^2 + 11 is prime.

Original entry on oeis.org

0, 6, 24, 30, 36, 54, 90, 96, 114, 120, 126, 144, 150, 180, 186, 204, 210, 234, 246, 270, 300, 324, 366, 390, 444, 456, 486, 504, 510, 564, 636, 654, 666, 684, 690, 720, 774, 780, 834, 846, 864, 930, 936, 954, 960, 984
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), this sequence (i=11), A114275 (i=12).

Programs

A114275 Numbers k such that k^2 + 12 is prime.

Original entry on oeis.org

1, 5, 7, 13, 19, 23, 29, 35, 37, 41, 43, 47, 55, 61, 85, 89, 91, 97, 113, 119, 121, 127, 139, 161, 167, 169, 175, 187, 191, 197, 203, 211, 215, 223, 229, 245, 265, 271, 295, 299, 307, 317, 335, 341, 355, 371, 379, 383, 401, 419, 427, 455, 463, 475, 491, 517, 527
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), this sequence (i=12).

Programs

A108701 Values of n such that n^2-2 and n^2+2 are both prime.

Original entry on oeis.org

3, 9, 15, 21, 33, 117, 237, 273, 303, 309, 387, 429, 441, 447, 513, 561, 573, 609, 807, 897, 1035, 1071, 1113, 1143, 1233, 1239, 1311, 1563, 1611, 1617, 1737, 1749, 1827, 1839, 1953, 2133, 2211, 2283, 2589, 2715, 2721, 2955, 3081, 3093, 3453, 3549, 3555, 3621, 3723, 3807
Offset: 1

Views

Author

John L. Drost, Jun 19 2005

Keywords

Comments

Since x^2 + 2 is divisible by 3 unless x is divisible by 3, all elements are 3 mod 6.
Intersection of A067201 and A028870. - Robert Israel, Sep 11 2014

Examples

			21 is on the list since 21^2 - 2 = 439 and 21^2 + 2 = 443 are primes.
		

References

  • David Wells, Prime Numbers, John Wiley and Sons, 2005, p. 219 (article:'Siamese primes')

Crossrefs

Programs

  • Magma
    [n: n in [3..3600 by 6] | IsPrime(n^2-2) and IsPrime(n^2+2)];  // Bruno Berselli, Apr 15 2011
    
  • Maple
    select(n -> isprime(n^2-2) and isprime(n^2+2), [seq(6*i+3,i=0..1000)]); # Robert Israel, Sep 11 2014
  • Mathematica
    Select[Range[5000], PrimeQ[#^2 - 2] && PrimeQ[#^2 + 2] &] (* Alonso del Arte, Sep 11 2014 *)
  • PARI
    is(n)=isprime(n^2-2)&&isprime(n^2+2) \\ Charles R Greathouse IV, Jul 02 2013

Extensions

Terms corrected by Charles R Greathouse IV, Sep 11 2014

A114271 Numbers k such that k^2 + 8 is prime.

Original entry on oeis.org

3, 9, 15, 21, 33, 51, 57, 81, 87, 111, 117, 123, 129, 135, 141, 147, 153, 177, 189, 213, 219, 255, 279, 285, 315, 321, 327, 345, 351, 363, 399, 417, 465, 471, 477, 483, 495, 549, 579, 585, 627, 657, 663, 669, 723, 735, 741, 747, 759, 771, 783, 789, 807, 825
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), this sequence (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

A113536 Numbers k such that k^2 + 13 is prime.

Original entry on oeis.org

0, 2, 4, 10, 12, 16, 18, 28, 40, 42, 44, 46, 60, 68, 72, 82, 84, 88, 94, 108, 110, 114, 116, 122, 126, 142, 144, 152, 158, 180, 192, 194, 198, 200, 220, 222, 264, 266, 268, 282, 284, 296, 298, 332, 336, 340, 354, 378, 380, 418, 420, 430, 434, 446, 464, 466, 486
Offset: 1

Views

Author

Zak Seidov, Jan 13 2006

Keywords

Examples

			If n=40 then n^2 + 13 = 1613 (prime), so 40 is in the sequence.
		

Crossrefs

Other cases: A005574 k=1, A067201 k=2, A049422 k=3, A007591 k=4, A078402 k=5, A114269-A114275 k=6-12.

Programs

  • Mathematica
    With[{k=13}, Select[Range[1000], PrimeQ[ #^2+k]&]]
  • PARI
    is(n)=isprime(n^2+13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Edited by R. J. Mathar, Aug 07 2008

A086381 Numbers n such that p=n^2+2 and p+2 are primes.

Original entry on oeis.org

1, 3, 15, 33, 45, 57, 117, 147, 243, 255, 303, 375, 423, 447, 453, 477, 573, 753, 837, 897, 903, 1035, 1497, 1905, 2055, 2085, 2193, 2283, 2433, 2487, 2535, 2583, 2757, 2823, 2943, 2955, 3003, 3213, 3285, 3345, 3603, 3657, 3687, 4407, 4575, 4977, 5037, 5043, 5325, 5355, 5367, 5403, 5727
Offset: 1

Views

Author

Zak Seidov, Sep 07 2003

Keywords

Comments

The twin primes are given by A253639 and A085554. Except for the initial term, all a(n)=3 (mod 6). - M. F. Hasler, Jan 16 2015

Crossrefs

Programs

  • Magma
    [n: n in [0..10000]|IsPrime(n^2+2) and IsPrime(n^2+4)] // Vincenzo Librandi, Dec 16 2010
    
  • PARI
    is_A086381(x)=ispseudoprime(x^2+2)&&ispseudoprime(x^2+4)
    forstep(x=1,9999,2,is_A086381(x)&&print1(x",")) \\ M. F. Hasler, Jan 16 2015

Formula

Intersection of A067201 and A007591. - M. F. Hasler, Jan 19 2015

Extensions

More terms from Vincenzo Librandi, Dec 16 2010

A121982 Numbers k such that k^2 + 15 is prime.

Original entry on oeis.org

2, 4, 8, 14, 16, 22, 26, 32, 34, 38, 44, 46, 52, 64, 68, 76, 86, 88, 98, 104, 106, 124, 134, 158, 172, 178, 184, 196, 202, 206, 212, 236, 238, 242, 248, 256, 262, 272, 284, 296, 298, 304, 316, 322, 326, 328, 338, 356, 362, 364, 374, 386, 388, 394, 398, 452, 472
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 09 2006

Keywords

Examples

			If k=104 then k^2 + 15 = 10831 (prime).
		

Crossrefs

Programs

A216976 Numbers k such that k^5+2 is prime.

Original entry on oeis.org

0, 1, 9, 11, 15, 27, 39, 51, 57, 105, 149, 179, 197, 219, 225, 231, 275, 281, 285, 299, 315, 317, 321, 335, 369, 389, 401, 405, 411, 419, 425, 491, 509, 545, 561, 587, 725, 741, 779, 789, 819, 855, 879, 909, 915, 977, 1007, 1019, 1059, 1115, 1145, 1161, 1199
Offset: 1

Views

Author

Michel Lagneau, Sep 21 2012

Keywords

Crossrefs

Programs

  • Maple
    select(t->isprime(t^5+2), [$0..10000]); # Robert Israel, Jan 01 2021
  • Mathematica
    lst={}; Do[If[PrimeQ[n^5+2], AppendTo[lst, n]], {n, 0, 10^3}]; lst
    Select[Range[0,1200],PrimeQ[#^5+2]&] (* Harvey P. Dale, Jan 30 2025 *)
  • PARI
    select(n->isprime(n^5+2),vector(2000,n,n-1)) /* Joerg Arndt, Sep 21 2012 */

A242330 Numbers k such that k^2 + 2 is a semiprime.

Original entry on oeis.org

2, 6, 7, 11, 12, 17, 18, 27, 29, 35, 37, 42, 43, 48, 51, 53, 54, 55, 60, 65, 66, 69, 72, 73, 75, 79, 83, 84, 87, 90, 93, 97, 115, 119, 125, 132, 133, 135, 137, 141, 144, 150, 153, 155, 159, 161, 165, 169, 174, 183, 186, 187, 189, 191, 192, 195, 198
Offset: 1

Views

Author

Vincenzo Librandi, May 14 2014

Keywords

Comments

The semiprimes of this form are: 6, 38, 51, 123, 146, 291, 326, 731, 843, 1227, 1371, 1766, 1851, 2306, 2603, 2811, 2918, 3027, 3602, ....
There are no four consecutive terms in this sequence, that is, a(n) > a(n-3) + 3 (check mod 6). Probably sieve theory can show that this sequence has density 0. - Charles R Greathouse IV, Feb 24 2023

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..200] | IsSemiprime(s) where s is n^2+2];
    
  • Mathematica
    Select[Range[300], PrimeOmega[#^2 + 2] == 2 &]
  • PARI
    issemi(n)=forprime(p=2,997,if(n%p==0, return(isprime(n/p)))); bigomega(n)==2
    is(n)=issemi(n^2+2) \\ Charles R Greathouse IV, Feb 24 2023

Formula

a(n) > 2n for n > 1. - Charles R Greathouse IV, Feb 24 2023

A121250 Numbers n such that n^2 + 14 is prime.

Original entry on oeis.org

3, 15, 27, 33, 45, 75, 87, 93, 165, 183, 195, 207, 243, 285, 297, 303, 345, 363, 375, 405, 435, 453, 495, 513, 537, 573, 585, 615, 627, 633, 657, 663, 717, 813, 843, 975, 1053, 1065, 1083, 1095, 1125, 1137, 1167, 1203, 1287, 1317, 1335, 1353, 1413, 1437, 1455
Offset: 1

Author

Parthasarathy Nambi, Sep 06 2006

Keywords

Examples

			If n=183 then n^2 + 14 = 33503 (prime).
		

Programs

Previous Showing 11-20 of 45 results. Next