cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A121982 Numbers k such that k^2 + 15 is prime.

Original entry on oeis.org

2, 4, 8, 14, 16, 22, 26, 32, 34, 38, 44, 46, 52, 64, 68, 76, 86, 88, 98, 104, 106, 124, 134, 158, 172, 178, 184, 196, 202, 206, 212, 236, 238, 242, 248, 256, 262, 272, 284, 296, 298, 304, 316, 322, 326, 328, 338, 356, 362, 364, 374, 386, 388, 394, 398, 452, 472
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 09 2006

Keywords

Examples

			If k=104 then k^2 + 15 = 10831 (prime).
		

Crossrefs

Programs

A121250 Numbers n such that n^2 + 14 is prime.

Original entry on oeis.org

3, 15, 27, 33, 45, 75, 87, 93, 165, 183, 195, 207, 243, 285, 297, 303, 345, 363, 375, 405, 435, 453, 495, 513, 537, 573, 585, 615, 627, 633, 657, 663, 717, 813, 843, 975, 1053, 1065, 1083, 1095, 1125, 1137, 1167, 1203, 1287, 1317, 1335, 1353, 1413, 1437, 1455
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 06 2006

Keywords

Examples

			If n=183 then n^2 + 14 = 33503 (prime).
		

Crossrefs

Programs

A138375 Primes of the form k^2 + 13.

Original entry on oeis.org

13, 17, 29, 113, 157, 269, 337, 797, 1613, 1777, 1949, 2129, 3613, 4637, 5197, 6737, 7069, 7757, 8849, 11677, 12113, 13009, 13469, 14897, 15889, 20177, 20749, 23117, 24977, 32413, 36877, 37649, 39217, 40013, 48413, 49297, 69709, 70769, 71837, 79537, 80669, 87629
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [a: n in [0..700] | IsPrime(a) where a is n^2+13]; // Vincenzo Librandi, Nov 30 2011
  • Mathematica
    Intersection[Table[n^2+13,{n,0,10^2}],Prime[Range[9*10^3]]] ...or... For[i=13,i<=13,a={};Do[If[PrimeQ[n^2+i],AppendTo[a,n^2+i]],{n,0,100}];Print["n^2+",i,",",a];i++ ]
    Select[Table[n^2+13,{n,0,7000}],PrimeQ] (* Vincenzo Librandi, Nov 30 2011 *)

Formula

a(n) = A241749(A113536(n)). - Elmo R. Oliveira, Apr 20 2025

A176969 Numbers n such that n^2 + 13^2 is prime.

Original entry on oeis.org

2, 8, 10, 12, 20, 22, 28, 30, 32, 38, 42, 48, 58, 60, 62, 68, 80, 90, 100, 108, 110, 112, 122, 128, 138, 142, 148, 150, 168, 172, 180, 190, 198, 200, 202, 210, 228, 230, 232, 238, 242, 248, 258, 262, 268, 280, 282, 302, 310, 318, 340, 342, 360, 362, 368, 378
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 29 2010

Keywords

Comments

The n^2 + d conjecture is a famous and still unsolved problem.
It states that there exist an infinite number of primes whose values are of the form n^2 + d for some integer n.
This is case d = 13^2.

Examples

			2^2 + 13^2 = 173 = prime(40), 2 is first term.
12^2 + 13^2 = 313 = prime(65) = palprime(11), 12 is 4th term.
310^2 + 13^2 = 96269 = prime(9274) = palprime(106), 310 the 49th term.
		

References

  • J. Matousek, J. Nesetril: Diskrete Mathematik: eine Entdeckungsreise, Springer-Lehrbuch, 2. Aufl., Berlin, 2007
  • M. du Sautoy: Die Musik der Primzahlen: Auf den Spuren des groessten Raetsels der Mathematik, Deutscher Taschenbuch Verlag, 2006

Crossrefs

Programs

  • PARI
    isok(n) = isprime(n^2 + 13^2) \\ Michel Marcus, Jun 28 2013

A176978 Numbers n such that n^2 + 13 and n^2 + 13^2 are primes.

Original entry on oeis.org

2, 10, 12, 28, 42, 60, 68, 108, 110, 122, 142, 180, 198, 200, 268, 282, 340, 378, 380, 418, 430, 488, 500, 502, 530, 612, 742, 788, 802, 838, 840, 912, 942, 948, 952, 1010, 1080, 1102, 1148, 1232, 1270, 1428, 1452, 1472, 1502, 1522, 1538, 1720, 1778, 1830
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 30 2010

Keywords

Comments

Numbers are subsequence of A113536 and A176969
See comments and references of A176969

Examples

			2^2 + 13 = 17 = prime(7), 2^2 + 13^2 = 173 = prime(40), 2 is first term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],AllTrue[#^2+{13,13^2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 28 2015 *)
  • PARI
    isok(n) = isprime(n^2 + 13) && isprime(n^2 + 13^2); \\ Michel Marcus, Aug 27 2013

A122062 Numbers k such that k^2 + 16 is prime.

Original entry on oeis.org

1, 5, 9, 11, 15, 21, 25, 29, 31, 41, 49, 51, 55, 65, 75, 79, 81, 89, 91, 95, 99, 109, 115, 119, 121, 125, 129, 151, 165, 179, 191, 211, 219, 221, 229, 231, 245, 249, 265, 275, 281, 289, 291, 295, 299, 301, 311, 315, 335, 351, 355, 361, 365, 369, 381, 389, 391
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 14 2006

Keywords

Examples

			If k=99 then k^2 + 16 = 9817 (prime).
		

Crossrefs

Programs

A264790 Numbers k such that k^2 + 17 is prime.

Original entry on oeis.org

0, 6, 24, 60, 66, 78, 90, 108, 144, 162, 174, 186, 234, 252, 294, 300, 318, 330, 336, 342, 372, 396, 420, 438, 456, 462, 468, 498, 528, 594, 636, 648, 654, 672, 720, 750, 798, 804, 834, 858, 888, 924, 930, 966, 984, 990, 1014, 1026, 1032, 1086, 1158, 1194, 1200
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2015

Keywords

Comments

Primes of the form k^2 + 17 have a representation as a sum of 2 squares because they belong to A002144.
All terms are multiple of 6.

Examples

			a(3) = 24 because 24^2 + 17 = 593, which is prime.
		

Crossrefs

Cf. A228244 (associated primes).
Other sequences of the type "Numbers n such that n^2 + k is prime": A005574 (k=1), A067201 (k=2), A049422 (k=3), A007591 (k=4), A078402 (k=5), A114269 (k=6), A114270 (k=7), A114271 (k=8), A114272 (k=9), A114273 (k=10), A114274 (k=11), A114275 (k=12), A113536 (k=13), A121250 (k=14), A121982 (k=15), A122062 (k=16).

Programs

  • Magma
    [n: n in [0..1200 ] | IsPrime(n^2+17)]; // Vincenzo Librandi, Nov 25 2015
  • Mathematica
    Select[Range[0, 1200], PrimeQ[#^2 + 17] &] (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    for(n=0, 1e3, if(isprime(n^2+17), print1(n, ", "))) \\ Altug Alkan, Nov 25 2015
    

Formula

A000005(A241847(a(n))) = 2.
A241847(a(n)) = A228244(n).

Extensions

Edited by Bruno Berselli, Nov 26 2015

A356109 Numbers k such that k^2 + {1,3,7,13} are prime.

Original entry on oeis.org

2, 4, 10, 5996, 8894, 11204, 14290, 23110, 30866, 37594, 43054, 64390, 74554, 83464, 93460, 109456, 111940, 132304, 151904, 184706, 238850, 262630, 265990, 277630, 300206, 315410, 352600, 355450, 376190, 404954, 415180, 462830, 483494, 512354, 512704, 566296
Offset: 1

Views

Author

Michel Lagneau, Jul 27 2022

Keywords

Comments

Conjecture: the sequence is infinite.

Examples

			2^2 + {1,3,7,13} = {5,7,11,17} all prime.
4^2 + {1,3,7,13} = {17,19,23,29} all prime.
		

Crossrefs

Intersection of A005574, A049422, A114270, A113536.
Subsequence of A182238.

Programs

  • Maple
    q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13]):
    select(q, [$0..1000000])[];  # Alois P. Heinz, Jul 27 2022
  • Mathematica
    Select[Range[500000], AllTrue[#^2 + {1,3,7,13}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
  • Python
    from sympy import isprime
    def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13})
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022

A113537 Numbers k such that k^2 + 11 and k^2 + 13 are primes.

Original entry on oeis.org

114, 126, 144, 180, 486, 684, 864, 1080, 1176, 1866, 1956, 2166, 2226, 2454, 2634, 2880, 3090, 3474, 4176, 4314, 5124, 5586, 5730, 5820, 6030, 6276, 6324, 6456, 6624, 6846, 6954, 7110, 7830, 7914, 8166, 8556, 8724, 9054, 9180, 9576, 9786, 9816
Offset: 1

Views

Author

Zak Seidov, Jan 13 2006

Keywords

Crossrefs

Intersection of A114274 and A113536.

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[ #^2+11]&&PrimeQ[ #^2+13]&]

A178504 Numbers n such that n^2 + 13 is an emirp.

Original entry on oeis.org

2, 10, 12, 18, 44, 60, 88, 108, 110, 114, 116, 122, 192, 198, 282, 380, 446, 574, 588, 604, 612, 618, 838, 840, 864, 970, 1032, 1068, 1104, 1148, 1186, 1228, 1258, 1314, 1368, 1384, 1390, 1412, 1754, 1888, 1894, 1930, 2658, 2660, 2728, 2784, 2804
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 29 2010

Keywords

Comments

A decimal emirp/mirp ("prime" / (German) "prim", spelled backwards) is defined as a prime number p whose reversal R(p) is also prime, but which is not a palindromic prime.

Examples

			2^2 + 13 = 17 = prime(7), 71 = prime(20), so 2 is in the sequence.
10^2 + 13 = 113 = prime(30), 311 = prime(64), so 10 is in the sequence.
28^2 + 13 = 797, which is a palindromic prime, so 28 is not in the sequence.
		

References

  • W. W. R. Ball, H. S. M. Coxeter: Mathematical Recreations and Essays, 13th edition, Dover Publications, 2010
  • H. Steinhaus: Kaleidoskop der Mathematik, VEB Dt. Verl. d. Wissenschaften, Berlin, 1959

Crossrefs

Subsequence of A113536.

Programs

  • Mathematica
    fQ[n_] := If[ PrimeQ[n^2 + 13], Block[{id = IntegerDigits[n^2 + 13]}, rid = Reverse@ id; PrimeQ@ FromDigits@ rid && rid != id]]; Select[ Range@ 3000, fQ] (* Robert G. Wilson v, Jul 26 2010 *)

Extensions

More terms from Robert G. Wilson v, Jul 26 2010
Showing 1-10 of 13 results. Next