A085554
Greater of twin primes of the form x^2+2, x^2+4.
Original entry on oeis.org
5, 13, 229, 1093, 2029, 3253, 13693, 21613, 59053, 65029, 91813, 140629, 178933, 199813, 205213, 227533, 328333, 567013, 700573, 804613, 815413, 1071229, 2241013, 3629029, 4223029, 4347229, 4809253, 5212093, 5919493, 6185173
Offset: 1
-
Transpose[Select[Table[x^2+{2,4},{x,5000}],AllTrue[#,PrimeQ]&]][[2]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 15 2015 *)
-
is_A086381(x)=ispseudoprime(x^2+2)&&ispseudoprime(x^2+4) \\ or is_A067201(x)&&is_A007591(x)
A085554 = apply(A087475,select(is_A086381,vector(9999,n,n))) \\ A087475=x->x^2+4.
write(f="b085554.txt",c=1," 5"); forstep(x=3,1e6,6,is_A086381(x)&&write(f,c++" "x^2+4))
\\ M. F. Hasler, Jan 18 2015
A253639
Lesser of twin primes of the form (k^2 + 2, k^2 + 4).
Original entry on oeis.org
3, 11, 227, 1091, 2027, 3251, 13691, 21611, 59051, 65027, 91811, 140627, 178931, 199811, 205211, 227531, 328331, 567011, 700571, 804611, 815411, 1071227, 2241011, 3629027, 4223027, 4347227, 4809251, 5212091, 5919491, 6185171, 6426227, 6671891, 7601051, 7969331, 8661251, 8732027, 9018011, 10323371
Offset: 1
-
Transpose[Select[Table[x^2+{2,4},{x,5000}],AllTrue[#,PrimeQ]&]][[1]] (* The program uses the AllTrue function from Mathematica version 10 *)
-
forstep(x=1,9999,2,is_A086381(x)&&print1(x^2+2,",")) \\ M. F. Hasler, Jan 16 2015
A086220
Numbers n such that p=n^2+2, p+2, p+6 and p+8 are four consecutive primes.
Original entry on oeis.org
3, 57, 32397, 54813, 61827, 62493, 98487, 98853, 119937, 213237, 254577, 306123, 322263, 328803, 438453, 603603, 619263, 656733, 671013, 675807, 821247, 875277, 1051173, 1121133, 1163697, 1230783, 1234317, 1337763, 1382223, 1388103, 1455927, 1538517, 1581237
Offset: 1
A257049
Integer area of integer-sided triangle such that two sides are twin primes.
Original entry on oeis.org
6, 66, 6810, 72006, 182430, 370614, 3203694, 6353634, 28698786, 33163770, 55637466, 105470250, 151375626, 178631034, 185921166, 217064574, 376267326, 853918566, 1172755854, 1443472134, 1472632266, 2217439890, 6709586934, 13826592870, 17356640970, 18127936590
Offset: 1
-
nn=40000; lst={}; Do[s=(2*Prime[c]-2+Prime[c+1]+Prime[c])/2; If[IntegerQ[s], area2=s (s-2*Prime[c]+2)(s-Prime[c+1])(s-Prime[c]); If[area2>0 && IntegerQ[Sqrt[area2]] && Prime[c+1]==Prime[c]+2, AppendTo[lst, Sqrt[area2]]]], {c, nn}]; Union[lst]
A086509
Numbers n such that p=n^2+2, p+2, p+6, p+8 and p+12 are five consecutive primes.
Original entry on oeis.org
3, 32397, 213237, 254577, 1587597, 2305167, 3440307, 5622903, 6067893, 6895953, 7424157, 8304927, 8917707, 8936367
Offset: 1
John F. Brennen gives first 19575 terms of this sequence, n <= 165294372813.
A110970
Squares of the form 2*prime(n) - prime(n+1).
Original entry on oeis.org
1, 9, 25, 81, 225, 361, 441, 1089, 1225, 2025, 2601, 3249, 3721, 5041, 7569, 7921, 12321, 13689, 15129, 18225, 21609, 30625, 31329, 38809, 42025, 47961, 53361, 59049, 65025, 77841, 88209, 91809, 94249, 99225, 110889, 123201, 126025, 131769
Offset: 1
A283698
Numbers k such that {k^2 + 2, k^2 + 4} and {k^3 + 2, k^3 + 4} are twin prime pairs.
Original entry on oeis.org
1, 3, 45, 2055, 39033, 48585, 101535, 104553, 112383, 117723, 129315, 152553, 170793, 178095, 234483, 246435, 258093, 272403, 304845, 306885, 365343, 372663, 375813, 405393, 405975, 436425, 456903, 494193, 538965, 551475, 559713, 569805, 570033, 767895, 792903
Offset: 1
a(2) = 3, {3^2 + 2 = 11, 3^2 + 4 = 13 } and {3^3 + 2 = 29, 3^3 + 4 = 31} are twin prime pairs.
a(3) = 45, {45^2 + 2 = 2027, 45^2 + 4 = 2029 } and {45^3 + 2 = 91127, 45^3 + 4 = 91129} are twin prime pairs.
-
Select[Range[1000000], PrimeQ[#^2 + 2] && PrimeQ[#^2 + 4] && PrimeQ[#^3 + 2] && PrimeQ[#^3 + 4] &]
-
for(n=1, 100000, if(isprime(n^2+2) && isprime(n^2+4) && isprime(n^3+2) && isprime(n^3+4), print1(n, ", ")))
A284014
Numbers k such that {k + 2, k + 4} and {k^2 + 2, k^2 + 4} are both twin prime pairs.
Original entry on oeis.org
1, 3, 15, 57, 147, 2085, 6687, 6957, 11055, 15267, 17385, 17577, 20505, 20637, 23667, 26247, 31077, 31317, 32115, 32967, 34497, 39225, 47775, 52065, 53715, 55335, 56205, 58365, 62187, 63585, 66567, 67215, 70875, 77235, 77475, 82005, 85827, 89595, 89817, 107505
Offset: 1
a(2) = 3, {3 + 2 = 5, 3 + 4 = 7} and {3^2 + 2 = 11, 3^2 + 4 = 13} are twin prime pairs.
a(3) = 15, {15 + 2 = 17, 15 + 4 = 19} and {15^2 + 2 = 227, 15^2 + 4 = 229} are twin prime pairs.
Appears to be the intersection of
A086381 and
A256388, but that may be unproven.
-
[n: n in [0..100000] | IsPrime(n+2) and IsPrime(n+4) and IsPrime(n^2+2) and IsPrime(n^2+4)];
-
Select[Range[1000000], PrimeQ[# + 2] && PrimeQ[# + 4] && PrimeQ[#^2 + 2] && PrimeQ[#^2 + 4] &]
-
for(n=1, 100000,2; if(isprime(n+2) && isprime(n+4) && isprime(n^2+2) &&isprime(n^2+4), print1(n, ", ")))
-
;; With Antti Karttunen's IntSeq-library.
(define A284014 (MATCHING-POS 1 1 (lambda (n) (and (= 1 (A010051 (+ n 2))) (= 1 (A010051 (+ n 4))) (= 1 (A010051 (+ (* n n) 2))) (= 1 (A010051 (+ (* n n) 4)))))))
;; Antti Karttunen, Apr 15 2017
A284058
Numbers k such that {k + 2, k + 4} and {k^3 + 2, k^3 + 4} are twin prime pairs.
Original entry on oeis.org
1, 3, 69, 1719, 3555, 8535, 8625, 9765, 10065, 17955, 27939, 32319, 34209, 35445, 39159, 44769, 47415, 55329, 56235, 75615, 85929, 91965, 96219, 97545, 98895, 122385, 122595, 138075, 142695, 143649, 145719, 152025, 191829, 192975, 197955, 200379, 201819, 202059
Offset: 1
a(2) = 3, {3 + 2 = 5, 3 + 4 = 7} and {3^3 + 2 = 29, 3^3 + 4 = 31} are twin prime pairs.
a(3) = 69, {69 + 2 = 71, 69 + 4 = 73} and {69^3 + 2 = 328511, 69^3 + 4 = 328513} are twin prime pairs.
-
Select[Range[1000000], PrimeQ[# + 2] && PrimeQ[# + 4] && PrimeQ[#^3 + 2] && PrimeQ[#^3 + 4] &]
-
for(n=1, 100000,2; if(isprime(n+2) && isprime(n+4) && isprime(n^3+2) && isprime(n^3+4), print1(n, ", ")))
A283222
Integer area of integer-sided triangle such that the sides are of the form p, p+2, 2(p-1), where p, p+2 and (p-1)/2 are prime numbers.
Original entry on oeis.org
66, 6810, 182430, 105470250, 17356640970, 678676246650, 1879504308930, 4491035717130, 10618004862030, 21136679055030, 23751520478010, 27081671511090, 27596192489190, 31721097756750, 115248550935750, 133303609919430, 140838829659930, 182797297112430, 197799116497230
Offset: 1
66 is in the sequence because the area of the triangle (11, 13, 20) is given by Heron's formula with s = 22 and A = sqrt(22(22-11)(22-13)(22-20)) = 66. The numbers 11, 13 and 5 = (11-1)/2 are primes.
-
nn:=100000:
for n from 1 by 2 to nn do:
if isprime(n^2+2) and isprime(n^2+4) and isprime((n^2+1)/2)
then
printf(`%d, `,n*(2*n^2+4)):
else
fi:
od:
-
nn=10000;lst={};Do[s=(2*Prime[c]-2+Prime[c+1]+Prime[c])/2;If[IntegerQ[s],area2=s (s-2*Prime[c]+2)(s-Prime[c+1])(s-Prime[c]); If[area2>0&&IntegerQ[Sqrt[area2]] &&Prime[c+1] ==Prime[c]+2 && PrimeQ[(Prime[c]-1)/2], AppendTo[lst,Sqrt[area2]]]], {c,nn}];Union[lst]
-
lista(nn) = {forprime(p=2, nn, if (isprime(p+2) && isprime((p-1)/2), ca = p; cb = p+2; cc = 2*(p-1); sp = (ca+cb+cc)/2; a2 = sp*(sp-ca)*(sp-cb)*(sp-cc); if (issquare(a2), print1(sqrtint(a2), ", "));););} \\ Michel Marcus, Mar 04 2017
Showing 1-10 of 10 results.
Comments