cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A276740 Numbers n such that 3^n == 5 (mod n).

Original entry on oeis.org

1, 2, 4, 76, 418, 1102, 4687, 7637, 139183, 2543923, 1614895738, 9083990938, 23149317409, 497240757797, 4447730232523, 16000967516764, 65262766108619, 141644055557882
Offset: 1

Views

Author

Dmitry Ezhov, Sep 16 2016

Keywords

Comments

No other terms below 10^15. Some larger terms: 194995887252090239, 2185052151122686482926861593785262. - Max Alekseyev, Oct 13 2016

Examples

			3 == 5 (mod 1), so 1 is a term;
9 == 5 (mod 2), so 2 is a term.
		

Crossrefs

Cf. A066601.
Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), this sequence (k=5), A277628 (k=6), A277126 (k=7), A277630 (k=8), A277274 (k=11).

Programs

  • Mathematica
    Select[Range[10^7], PowerMod[3, #, #] == Mod[5, #] &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    isok(n) = Mod(3, n)^n == Mod(5, n); \\ Michel Marcus, Sep 17 2016
    
  • Python
    A276740_list = [1,2,4]+[n for n in range(5,10**6) if pow(3,n,n) == 5] # Chai Wah Wu, Oct 04 2016

Extensions

a(11)-a(13) from Chai Wah Wu, Oct 05 2016
a(14) from Lars Blomberg, Oct 12 2016
a(15)-a(18) from Max Alekseyev, Oct 13 2016
a(12) was missing Robert G. Wilson v, Oct 19 2016

A277126 Positive integers n such that 3^n == 7 (mod n).

Original entry on oeis.org

1, 2, 295, 883438, 252027511, 7469046275, 26782373099, 53191768475, 55246802458, 819613658855, 893727887879978
Offset: 1

Views

Author

Seiichi Manyama, Oct 06 2016

Keywords

Comments

No other terms below 10^15. A larger term: 9135884036634915191945452485106476242. - Max Alekseyev, Oct 12 2016
Terms are not divisible by 127 (Alekseyev 2016).

Examples

			3 == 7 mod 1, so 1 is a term;
9 == 7 mod 2, so 2 is a term.
		

References

  • M. A. Alekseyev. "Problem 4101". Crux Mathematicorum 42:1 (2016), 28.

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), this sequence (k=7), A277274 (k=11).

Programs

Extensions

a(5) from Joerg Arndt, Oct 06 2016
a(6)-a(11) from Max Alekseyev, Oct 12 2016

A277288 Positive integers k such that k divides 3^k + 5.

Original entry on oeis.org

1, 2, 14, 1978, 38209, 4782974, 9581014, 244330711, 365496202, 1661392258, 116084432414, 288504187458218, 490179448388654, 802245996685561
Offset: 1

Views

Author

Seiichi Manyama, Oct 09 2016

Keywords

Comments

No other terms below 10^15. Some larger terms: 79854828136468902206, 3518556634988844968631084847788071912030455376274045370172567094578. - Max Alekseyev, Oct 14 2016

Examples

			3^14 + 5 = 4782974 = 14 * 341641, so 14 is a term.
		

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), this sequence (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), A277274 (k=11).

Programs

  • PARI
    is(n)=Mod(3,n)^n==-5; \\ Joerg Arndt, Oct 09 2016
    
  • Python
    A277288_list = [1,2]+[n for n in range(3,10**6) if pow(3,n,n)==n-5] # Chai Wah Wu, Oct 09 2016
    
  • Sage
    def A277288_list(search_limit):
        n, t, r = 1, Integer(3), [1]
        while n < search_limit:
            n += 1
            t *= 3
            if n.divides(t+5): r.append(n)
        return r # Peter Luschny, Oct 10 2016

Extensions

a(9) from Joerg Arndt, Oct 09 2016
a(10) from Chai Wah Wu, Oct 09 2016
a(11)-a(14) from Max Alekseyev, Oct 14 2016

A277289 Positive integers n such that n | (3^n + 7).

Original entry on oeis.org

1, 2, 4, 5, 8, 25, 44, 4664, 6568, 1353025, 2919526, 5709589, 7827725, 64661225, 85132756, 153872408, 743947534, 34304296003, 38832409867, 40263727492, 1946603375348, 2469908330348, 64471909888247, 274267749806485, 888906849689897, 896501949422459
Offset: 1

Views

Author

Seiichi Manyama, Oct 09 2016

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Oct 14 2016
492385451091805616444 is a term.

Examples

			3^25 + 7 = 847288609450 = 25 * 33891544378, so 25 is a term.
		

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), this sequence (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), A277274 (k=11).

Programs

  • PARI
    is(n)=Mod(3,n)^n==-7; \\ Joerg Arndt, Oct 09 2016
    
  • Python
    A277289_list = [1,2,4,5]+[n for n in range(6,10**6) if pow(3,n,n)==n-7] # Chai Wah Wu, Oct 12 2016

Extensions

a(17) from Joerg Arndt, Oct 09 2016
a(18)-a(20) from Chai Wah Wu, Oct 12 2016
a(21)-a(26) from Max Alekseyev, Oct 14 2016

A128357 Quotients A128356(n)/prime(n).

Original entry on oeis.org

10, 7, 311, 127, 23, 157, 343927, 7805561, 47, 9629, 311, 25679, 821, 1470086279, 12409, 71233, 1232333, 2443783, 2939291, 71711, 352883, 181113265579, 167, 105199, 3881, 1314520253, 619, 20759, 117503, 1162660843, 1880415721, 263
Offset: 1

Views

Author

Alexander Adamchuk, Mar 02 2007, Mar 09 2007

Keywords

Comments

A128356 = {20, 21, 1555, 889, 253, 2041, 5846759, ...} = Least number k>1 (that is not the power of prime p) such that k divides (p+1)^k-1, where p = prime(n). Most listed terms are primes, except a(7) = 20231*17 and a(8) = 410819*19. a(15) = 12409. a(16) = 71233.
Note that all prime listed terms of {a(n)} coincide with terms of A128456 = {2, 7, 311, 127, 23, 157, 7563707819165039903, 75368484119, 47, 9629, 311, 25679, 821, ...} = least prime factor of ((p+1)^p - 1)/p^2, where p = prime(n).

Crossrefs

Cf. A128356 (least number k > 1 (that is not a power of prime p) such that k divides (p+1)^k-1, where p = prime(n)).
Cf. A128456 (least prime factor of ((p+1)^p - 1)/p^2, where p = prime(n)).

Extensions

Terms a(14) onwards from Max Alekseyev, Feb 08 2010

A277274 Positive integers n such that 3^n == 11 (mod n).

Original entry on oeis.org

1, 2, 1162, 1692934, 3851999, 274422823, 14543645261, 492230729674, 773046873382, 13010754158393, 31446154470014, 583396812890467, 598371102650063
Offset: 1

Views

Author

Seiichi Manyama, Oct 08 2016

Keywords

Comments

No other terms below 10^15. Some larger terms: 38726095838775708310162, 2682806839696008709567739369. - Max Alekseyev, Oct 12 2016

Examples

			3 == 11 mod 1, so 1 is a term.
9 == 11 mod 2, so 2 is a term.
		

Crossrefs

Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), this sequence (k=11).

Programs

  • Mathematica
    k = 3; lst = {1, 2}; While[k < 12000000001, If[ PowerMod[3, k, k] == 11, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Oct 08 2016 *)

Extensions

a(7)-a(13) from Max Alekseyev, Oct 12 2016

A277340 Positive integers n such that n | (3^n + 11).

Original entry on oeis.org

1, 2, 4, 7, 10, 92, 1099, 29530, 281473, 657892, 3313964, 9816013, 18669155396, 94849225930, 358676424226, 957439868543, 1586504109310, 41431374800470, 241469610359708, 256165266592379
Offset: 1

Views

Author

Seiichi Manyama, Oct 09 2016

Keywords

Comments

No other terms below 10^15. Some larger terms: 9151612250553176993, 1401778935853533028413047652833, 5645122353966835994338815444821661584288016927879134, 313*(3^626+11)/6562567821545333606830 (280 digits). - Max Alekseyev, Oct 14 2016

Examples

			3^10 + 11 = 59060 = 10 * 5906, so 10 is a term.
		

Crossrefs

Solutions to 3^n == k (mod n): this sequence (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), A277274 (k=11).

Programs

  • PARI
    is(n)=Mod(3,n)^n==-11; \\ Joerg Arndt, Oct 10 2016
    
  • Python
    A277340_list = [1,2,4,7,10]+[n for n in range(11,10**6) if pow(3,n,n)==n-11] # Chai Wah Wu, Oct 11 2016

Extensions

a(13)-a(14) from Chai Wah Wu, Oct 12 2016
a(15)-a(20) from Max Alekseyev, Oct 14 2016

A177805 Numbers k such that k divides 15^k - 1.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 28, 32, 49, 56, 64, 98, 112, 128, 136, 196, 224, 256, 272, 343, 392, 448, 452, 512, 544, 686, 784, 812, 896, 904, 952, 1024, 1088, 1372, 1568, 1624, 1792, 1808, 1904, 2048, 2176, 2312, 2401, 2744, 3136, 3164, 3248, 3584, 3616, 3808, 4096
Offset: 1

Views

Author

Alexander Adamchuk, May 17 2010

Keywords

Comments

A000420 are the only odd terms of the sequence. - Robert Israel, Feb 25 2020

Crossrefs

Programs

A093546 Numbers n such that n divides 2^n^2 + 1.

Original entry on oeis.org

1, 3, 9, 27, 57, 81, 171, 243, 513, 729, 1083, 1467, 1539, 2187, 3249, 4401, 4617, 6561, 9747, 13203, 13851, 19683, 20577, 27873, 29241, 32547, 39393, 39609, 41553, 59049, 61731, 83619, 87723, 97641, 118179, 118827, 124659, 177147, 185193, 239121
Offset: 1

Views

Author

Farideh Firoozbakht, Mar 31 2004

Keywords

Comments

This sequence is closed under multiplication. A006521 is a subsequence of this sequence. A006521 is also closed under multiplication. In fact if m is even and k is a natural number then the sequence "n divides m^n^k + 1" is a subsequence of the sequence "n divides m^n^(k+1)+ 1" and both are closed under multiplication.
"Closed under multiplication" means that if x and y are terms then so is x*y.

Crossrefs

Programs

Extensions

Corrected and extended by Robert G. Wilson v, Apr 02 2004

A177807 Numbers k that divide 17^k - 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 54, 60, 64, 72, 78, 80, 84, 96, 100, 108, 116, 120, 126, 128, 144, 156, 160, 162, 168, 180, 192, 200, 216, 220, 232, 234, 240, 252, 256, 288, 294, 300, 312, 320, 324, 336, 342, 348, 360, 378, 384, 400, 420
Offset: 1

Views

Author

Alexander Adamchuk, May 17 2010

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Select[Range[420], PowerMod[17, #, #] == 1 &] (* Giovanni Resta, Jan 30 2020 *)
Previous Showing 11-20 of 27 results. Next