cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A124753 a(3n+k) = (k+1)*binomial(4n+k, n)/(3n+k+1), where k is n reduced mod 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 9, 15, 22, 52, 91, 140, 340, 612, 969, 2394, 4389, 7084, 17710, 32890, 53820, 135720, 254475, 420732, 1068012, 2017356, 3362260, 8579560, 16301164, 27343888, 70068713, 133767543, 225568798, 580034052, 1111731933, 1882933364, 4855986044, 9338434700
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Comments

Row sums of Riordan array (1,x(1-x^3))^(-1). Also row sums of A124752.
a(n) is the number of ordered trees (A000108) with n vertices in which every non-leaf non-root vertex has exactly two children that are leaves. For example, a(4) counts the 2 trees
\ /
| and \|/ . - David Callan, Aug 22 2014

Crossrefs

Cf. A084080, A002293, A069271 (trisection), A006632 (trisection).

Programs

  • Maple
    A124753 := proc(n)
        local k,np;
        k := modp(n,3) ;
        np := floor(n/3) ;
        (k+1)*binomial(np+n,np)/(n+1) ;
    end proc:
    seq(A124753(n),n=0..40) ; # R. J. Mathar, Oct 30 2014
  • Mathematica
    a[n_] := Module[{q, k}, {q, k} = QuotientRemainder[n, 3]; (k+1)*Binomial[4q + k, q]/(3q + k + 1)];
    Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Nov 20 2017 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1,n,A=1+x*A*exp(sum(m=1,n\3,3*polcoeff(log(A+x*O(x^n)),3*m)*x^(3*m))+x*O(x^n))); polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
    
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\3, 4, n%3+1); \\ Seiichi Manyama, Jul 20 2025

Formula

a(3n) = A002293(n), a(3n+1) = A069271(n), a(3n+2) = A006632(n+1).
a(n) = ((mod(n,3)+1)*C(4*floor(n/3)+mod(n,3), floor(n/3))/ (3*floor(n/3) + 1 + mod(n, 3))). - Paul Barry, Dec 14 2006
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(w*x)*A(w^2*x), where w = exp(2*Pi*I/3). - Paul D. Hanna, Jun 04 2012
G.f. satisfies: A(x) = 1 + x*A(x)*G(x^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. - Paul D. Hanna, Jun 04 2012
Conjecture: +8019*n*(n-1)*(n+1)*a(n) +17496*n*(n-1)*(n-3)*a(n-1) +2592*(3*n-5)*(n-1)*(3*n-16)*a(n-2) +216*(-224*n^3+48*n^2+3926*n-6331)*a(n-3) +576*(-288*n^3+2448*n^2-6558*n+5443)*a(n-4) +768*(-288*n^3+3600*n^2-14878*n+20375)*a(n-5) -8192*(4*n-23)*(2*n-11)*(4*n-21)*a(n-6)=0. - R. J. Mathar, Oct 30 2014
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} a(3*k) * a(n-1-3*k). - Seiichi Manyama, Jul 07 2025

A233834 a(n) = 5*binomial(7*n+5,n)/(7*n+5).

Original entry on oeis.org

1, 5, 45, 500, 6200, 82251, 1142295, 16398200, 241379325, 3623534200, 55262073757, 853814730600, 13335836817420, 210225027967325, 3340362288091500, 53443628421286320, 860246972339613855, 13921016318025200505, 226352372251889455000, 3696160728052814340000
Offset: 0

Views

Author

Tim Fulford, Dec 16 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 7, r = 5.

Crossrefs

Programs

  • Magma
    [5*Binomial(7*n+5, n)/(7*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[7 n + 5, n]/(7 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(7*n+5,n)/(7*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/5))^5+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 7, r = 5.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^5), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/5) is the o.g.f. for A002296. - Peter Bala, Oct 14 2015

A235339 a(n) = 9*binomial(11*n+9,n)/(11*n+9).

Original entry on oeis.org

1, 9, 135, 2460, 49725, 1072197, 24163146, 562311720, 13409091540, 325949656825, 8046743477058, 201198155083200, 5084704634041305, 129673310477725350, 3332952595603387800, 86250038091202771344, 2245329811618166111985
Offset: 0

Views

Author

Tim Fulford, Jan 06 2014

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 11, r = 9.

Crossrefs

Programs

  • Magma
    [9*Binomial(11*n+9, n)/(11*n+9): n in [0..30]];
  • Mathematica
    Table[9 Binomial[11 n + 9, n]/(11 n + 9), {n, 0, 30}]
  • PARI
    a(n) = 9*binomial(11*n+9,n)/(11*n+9);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/9))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p = 11, r = 9.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^9), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/9) is the o.g.f. for A230388. - Peter Bala, Oct 14 2015

A215715 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^4).

Original entry on oeis.org

1, 2, 13, 118, 1242, 14227, 172177, 2165732, 28032668, 370944717, 4995412647, 68239105203, 943278064473, 13169938895473, 185453340189492, 2630813161415976, 37561512615867450, 539336703889993006, 7783290731579783544, 112828761898680983141, 1642222504807143423470
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2012

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = (1 + x^r*F(x)^(p+1)) * (1 + x^(r+s)*F(x)^(p+q+1)), then
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ).
The radius of convergence of g.f. A(x) is r = 0.06368546004073732405169450... with A(r) = 1.3960637117611795281240000742797488619448782873... where y=A(r) satisfies 6*y^5 + 17*y^4 - 46*y^3 + 16*y^2 + 4*y - 8 = 0.

Examples

			G.f.: A(x) = 1 + 2*x + 13*x^2 + 118*x^3 + 1242*x^4 + 14227*x^5 + ...
Related expansions.
A(x)^2 = 1 + 4*x + 30*x^2 + 288*x^3 + 3125*x^4 + 36490*x^5 + ...
A(x)^4 = 1 + 8*x + 76*x^2 + 816*x^3 + 9454*x^4 + 115260*x^5 + ...
A(x)^6 = 1 + 12*x + 138*x^2 + 1648*x^3 + 20427*x^4 + 260934*x^5 + ...
where A(x) = 1 + x*(A(x)^2 + A(x)^4) + x^2*A(x)^6.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x)^2)*x*A(x) + (1 + 2^2*A(x)^2 + A(x)^4)*x^2*A(x)^2/2 +
(1 + 3^2*A(x)^2 + 3^2*A(x)^4 + A(x)^6)*x^3*A(x)^3/3 +
(1 + 4^2*A(x)^2 + 6^2*A(x)^4 + 4^2*A(x)^6 + A(x)^8)*x^4*A(x)^4/4 +
(1 + 5^2*A(x)^2 + 10^2*A(x)^4 + 10^2*A(x)^6 + 5^2*A(x)^8 + A(x)^10)*x^5*A(x)^5/5 + ...
Explicitly,
log(A(x)) = 2*x + 22*x^2/2 + 284*x^3/3 + 3878*x^4/4 + 54607*x^5/5 + 784144*x^6/6 + 11414265*x^7/7 + 167819014*x^8/8 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1+Sqrt[1-4*x*(1+x)^2])^2/(4*(1+x)^2),{x,0,20}],x]],x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^2)*(1 + x*A^4)); polcoeff(A, n)}
    for(n=0,31,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff( sqrt((1/x)*serreverse( x*(1 + sqrt(1 - 4*x*(1+x)^2 +x*O(x^n)))^2/(4*(1+x)^2))), n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^(2*j))*x^m*A^m/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^(2*j))*x^m*A^(3*m)/m))); polcoeff(A, n)}

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x*(1 + sqrt(1 - 4*x*(1+x)^2))^2/(4*(1+x)^2) ) ).
(2) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^(2*k) ).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(3*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^(2*k) ).
The formal inverse of the g.f. A(x) is (sqrt(x^4 + 4*x^3 - 2*x^2 + 1) - (1+x^2))/(2*x^4).
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 15.70217125479403872... is the root of the equation -1024 - 3840*d + 26368*d^2 - 58644*d^3 + 1933*d^4 + 108*d^5 = 0 and c = 0.320114409... - Vaclav Kotesovec, Sep 17 2013
a(n) = Sum_{k=0..n} binomial(2*n+2*k+1,k) * binomial(2*n+2*k+1,n-k) / (2*n+2*k+1). - Seiichi Manyama, Jul 18 2023

A233658 7*binomial(4*n + 7, n)/(4*n + 7).

Original entry on oeis.org

1, 7, 49, 357, 2695, 20930, 166257, 1344904, 11042724, 91801255, 771201431, 6536904290, 55838330730, 480197194260, 4154140621425, 36126361733616, 315647802951628, 2769544822393356, 24392874398953060, 215582307059144025, 1911286446370861455, 16993580092566979770, 151491588134469616215
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=4, r=7.

Crossrefs

Programs

  • Magma
    [7*Binomial(4*n+7,n)/(4*n+7): n in [0..30]];
  • Mathematica
    Table[7 Binomial[4 n + 7, n]/(4 n + 7), {n, 0, 30}]
  • PARI
    a(n) = 7*binomial(4*n+7,n)/(4*n+7);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/7))^7+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=4, r=7.
D-finite with recurrence 3*(3*n+5)*(3*n+7)*(n+2)*a(n) -(n+1)*(661*n^2+1301*n+558)*a(n-1) +120*(4*n+1)*(2*n+1)*(4*n-1)*a(n-2)=0. - R. J. Mathar, Nov 22 2024
D-finite with recurrence 3*n*(3*n+5)*(3*n+7)*(n+2)*a(n) -8*(4*n+5)*(2*n+3)*(4*n+3)*(n+1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A233667 a(n) = 5*binomial(4*n+10,n)/(2*n+5).

Original entry on oeis.org

1, 10, 85, 700, 5750, 47502, 395560, 3321120, 28102425, 239503550, 2054455634, 17726454200, 153757722300, 1340045361750, 11729338225200, 103068670351552, 908923976461140, 8041606944709800, 71359997110169625, 634978885837495500, 5664526697522326590
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=4, r=10.

Crossrefs

Programs

  • Magma
    [5*Binomial(4*n+10,n)/(2*n+5): n in [0..30]];
  • Mathematica
    Table[5 Binomial[4 n + 10, n]/(2 n + 5), {n, 0, 30}]
  • PARI
    a(n) = 5*binomial(4*n+10,n)/(2*n+5);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(2/5))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=4, r=10.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 4F4(5/2,11/4,3,13/4; 1,11/3,4,13/3; 256*x/27).
a(n) ~ 5*2^(8*n+39/2)/(sqrt(Pi)*3^(3*n+21/2)*n^(3/2)). (End)

A364331 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).

Original entry on oeis.org

1, 2, 15, 163, 2070, 28698, 421015, 6425644, 100977137, 1622885389, 26551709946, 440744175801, 7404449354076, 125657625548824, 2150963575012295, 37094953102567208, 643904274979347286, 11241232087809137759, 197247501440314516840, 3476787208220672891388, 61533794803235280779261
Offset: 0

Views

Author

Seiichi Manyama, Jul 18 2023

Keywords

Crossrefs

Programs

  • Maple
    A364331 := proc(n)
        add( binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k)/(2*n+3*k+1),k=0..n) ;
    end proc:
    seq(A364331(n),n=0..70); # R. J. Mathar, Jul 25 2023
  • PARI
    a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k) / (2*n+3*k+1).
x/series_reversion(x*A(x)) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + ..., the g.f. of A215623. - Peter Bala, Sep 08 2024

A381772 Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 11, 83, 727, 6940, 70058, 735502, 7949031, 87851819, 988307647, 11279719247, 130286197186, 1520108988221, 17889102534329, 212095541328931, 2531001870925559, 30376237591559863, 366417240105654587, 4440000077166319993, 54020150448778625847, 659665548217188211288
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((serreverse(x/((1+x)*(1-sqrt(1-4*x))/(2*x))^2)/x)^(1/2))

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x)^2) * C(x*A(x)^2).
a(n) = Sum_{k=0..n} binomial(2*n+2*k+1,k) * binomial(2*n+1,n-k)/(2*n+2*k+1).

A233666 a(n) = 2*binomial(4*n + 8, n)/(n + 2).

Original entry on oeis.org

1, 8, 60, 456, 3542, 28080, 226548, 1855040, 15380937, 128896456, 1090119316, 9292881360, 79769043900, 688915123680, 5981962494852, 52193342019456, 457367224685012, 4023551800087200, 35521420783728880, 314608026125871720, 2794654131668318430
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=4, r=8.

Crossrefs

Programs

  • Magma
    [2*Binomial(4*n+8,n)/(n+2): n in [0..30]]; // Vincenzo Librandi, Dec 14 2013
  • Mathematica
    Table[2/(n + 2) Binomial[4 n + 8, n], {n, 0, 40}] (* Vincenzo Librandi, Dec 14 2013 *)
  • PARI
    a(n) = 4*binomial(4*n+8,n)/(n+2);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(1/2))^8+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=4, r=8.
From Ilya Gutkovskiy, Sep 14 2018: (Start)
E.g.f.: 4F4(2,9/4,5/2,11/4; 1,3,10/3,11/3; 256*x/27).
a(n) ~ 2^(8*n+35/2)/(sqrt(Pi)*3^(3*n+17/2)*n^(3/2)). (End)
D-finite with recurrence 3*(3*n+7)*(n+2)*(3*n+8)*a(n) -2*(n+1)*(317*n^2+954*n+709)*a(n-1) +112*(4*n+1)*(2*n+1)*(4*n+3)*a(n-2)=0. - R. J. Mathar, Nov 22 2024

A380514 Expansion of e.g.f. exp(x*G(x)^2) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 5, 67, 1537, 50021, 2107021, 108885295, 6665443457, 471522589417, 37843890892021, 3397250515809371, 337267132243022785, 36687625652474612557, 4339368321317331858557, 554467482301151809302151, 76112537023512618262963201, 11170667360636927554290623825, 1745500813880455301486766050917
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, binomial(2*n+2*k, k)/((2*n+2*k)*(n-k-1)!)));

Formula

a(n) = 2 * n! * Sum_{k=0..n-1} binomial(2*n+2*k,k)/((2*n+2*k) * (n-k-1)!) for n > 0.
Previous Showing 11-20 of 32 results. Next