cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 63 results. Next

A351245 a(n) = n^5 * Sum_{p|n, p prime} 1/p^5.

Original entry on oeis.org

0, 1, 1, 32, 1, 275, 1, 1024, 243, 3157, 1, 8800, 1, 16839, 3368, 32768, 1, 66825, 1, 101024, 17050, 161083, 1, 281600, 3125, 371325, 59049, 538848, 1, 867151, 1, 1048576, 161294, 1419889, 19932, 2138400, 1, 2476131, 371536, 3232768, 1, 4629701, 1, 5154656, 818424, 6436375, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^5. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 275; a(6) = 6^5 * Sum_{p|6, p prime} 1/p^5 = 7776 * (1/2^5 + 1/3^5) = 275.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), this sequence (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Mathematica
    Array[#^5*DivisorSum[#, 1/#^5 &, PrimeQ] &, 47] (* Stefano Spezia, Jul 15 2025 *)
  • PARI
    a(n) = my(f = factor(n)); sum(i = 1, #f~, (n/f[i,1])^5) \\ David A. Corneth, Jul 15 2025

Formula

a(A000040(n)) = 1.
Dirichlet g.f.: zeta(s-5)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^5/n^s) Sum_{p|n} 1/p^5. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^5*(p*j)^(s-5)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-5) = zeta(s-5)*primezeta(s). The result generalizes to higher powers of p. - Michael Shamos, Mar 03 2023
Sum_{k=1..n} a(k) ~ A085966 * n^6/6. - Vaclav Kotesovec, Mar 03 2023
a(n) = Sum_{d|n} A059378(d)*A001221(n/d). - Ridouane Oudra, Jul 14 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^5, where c = A010051.
a(p^k) = p^(5*k-5) for p prime and k>=1. (End)

A351246 a(n) = n^6 * Sum_{p|n, p prime} 1/p^6.

Original entry on oeis.org

0, 1, 1, 64, 1, 793, 1, 4096, 729, 15689, 1, 50752, 1, 117713, 16354, 262144, 1, 578097, 1, 1004096, 118378, 1771625, 1, 3248128, 15625, 4826873, 531441, 7533632, 1, 12437281, 1, 16777216, 1772290, 24137633, 133274, 36998208, 1, 47045945, 4827538, 64262144, 1, 93342313
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^6. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 793; a(6) = 6^6 * Sum_{p|6, p prime} 1/p^6 = 46656 * (1/2^6 + 1/3^6) = 793.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), this sequence (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Mathematica
    Array[#^6*DivisorSum[#, 1/#^6 &, PrimeQ] &, 50] (* Wesley Ivan Hurt, Jul 15 2025 *)

Formula

a(A000040(n)) = 1.
a(n) = Sum_{d|n} A069091(d)*A001221(n/d). - Ridouane Oudra, Jul 14 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^6, where c = A010051.
a(p^k) = p^(6*k-6) for p prime and k>=1. (End)

A351247 a(n) = n^7 * Sum_{p|n, p prime} 1/p^7.

Original entry on oeis.org

0, 1, 1, 128, 1, 2315, 1, 16384, 2187, 78253, 1, 296320, 1, 823671, 80312, 2097152, 1, 5062905, 1, 10016384, 825730, 19487299, 1, 37928960, 78125, 62748645, 4782969, 105429888, 1, 181139311, 1, 268435456, 19489358, 410338801, 901668, 648051840, 1, 893871867, 62750704
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^7. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 2315; a(6) = 6^7 * Sum_{p|6, p prime} 1/p^7 = 279936 * (1/2^7 + 1/3^7) = 2315.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), this sequence (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Mathematica
    Array[#^7*DivisorSum[#, 1/#^7 &, PrimeQ] &, 50] (* Wesley Ivan Hurt, Jul 15 2025 *)

Formula

a(A000040(n)) = 1.
a(n) = Sum_{d|n} A069092(d)*A001221(n/d). - Ridouane Oudra, Jul 15 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^7, where c = A010051.
a(p^k) = p^(7*k-7) for p prime and k>=1. (End)

A351248 a(n) = n^8 * Sum_{p|n, p prime} 1/p^8.

Original entry on oeis.org

0, 1, 1, 256, 1, 6817, 1, 65536, 6561, 390881, 1, 1745152, 1, 5765057, 397186, 16777216, 1, 44726337, 1, 100065536, 5771362, 214359137, 1, 446758912, 390625, 815730977, 43046721, 1475854592, 1, 2664570241, 1, 4294967296, 214365442, 6975757697, 6155426, 11449942272
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^8. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 6817; a(6) = 6^8 * Sum_{p|6, p prime} 1/p^8 = 1679616 * (1/2^8 + 1/3^8) = 6817.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), this sequence (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Mathematica
    Array[#^8*DivisorSum[#, 1/#^8 &, PrimeQ] &, 36] (* Stefano Spezia, Jul 15 2025 *)
  • Python
    from sympy import primefactors
    def A351248(n): return sum((n//p)**8 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022

Formula

a(A000040(n)) = 1.
a(n) = Sum_{d|n} A069093(d)*A001221(n/d). - Ridouane Oudra, Jul 15 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^8, where c = A010051.
a(p^k) = p^(8*k-8) for p prime and k>=1. (End)

A351249 a(n) = n^9 * Sum_{p|n, p prime} 1/p^9.

Original entry on oeis.org

0, 1, 1, 512, 1, 20195, 1, 262144, 19683, 1953637, 1, 10339840, 1, 40354119, 1972808, 134217728, 1, 397498185, 1, 1000262144, 40373290, 2357948203, 1, 5293998080, 1953125, 10604499885, 387420489, 20661308928, 1, 39453437071, 1, 68719476736, 2357967374, 118587877009, 42306732
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^9. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 20195; a(6) = 6^9 * Sum_{p|6, p prime} 1/p^9 = 10077696 * (1/2^9 + 1/3^9) = 20195.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), this sequence (k=9), A351262 (k=10).

Programs

  • Mathematica
    Array[#^9*DivisorSum[#, 1/#^9 &, PrimeQ] &, 50] (* Wesley Ivan Hurt, Jul 15 2025 *)
  • Python
    from sympy import primefactors
    def A351249(n): return sum((n//p)**9 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022

Formula

a(A000040(n)) = 1.
a(n) = Sum_{d|n} A069094(d)*A001221(n/d). - Ridouane Oudra, Jul 15 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^9, where c = A010051.
a(p^k) = p^(9*k-9) for p prime and k>=1. (End)

A351262 a(n) = n^10 * Sum_{p|n, p prime} 1/p^10.

Original entry on oeis.org

0, 1, 1, 1024, 1, 60073, 1, 1048576, 59049, 9766649, 1, 61514752, 1, 282476273, 9824674, 1073741824, 1, 3547250577, 1, 10001048576, 282534298, 25937425625, 1, 62991106048, 9765625, 137858492873, 3486784401, 289255703552, 1, 586710856801, 1, 1099511627776, 25937483650
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^10. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 60073; a(6) = 6^10 * Sum_{p|6, p prime} 1/p^10 = 60466176 * (1/2^10 + 1/3^10) = 60073.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), this sequence (k=10).

Programs

  • Maple
    f:= proc(n) local p;
      n^10 * add(1/p^10, p = numtheory:-factorset(n))
    end proc:
    map(f, [$1..40]); # Robert Israel, Sep 10 2024
  • Mathematica
    Join[{0},Table[n^10 Total[1/FactorInteger[n][[;;,1]]^10],{n,2,40}]] (* Harvey P. Dale, Aug 10 2024 *)
  • PARI
    a(n) = my(f=factor(n)); n^10*sum(k=1, #f~, 1/f[k,1]^10); \\ Michel Marcus, Sep 10 2024
  • Python
    from sympy import primefactors
    def A351262(n): return sum((n//p)**10 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
    

Formula

a(A000040(n)) = 1.
a(n) = Sum_{d|n} A069095(d)*A001221(n/d). - Ridouane Oudra, Jul 15 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^10, where c = A010051.
a(p^k) = p^(10*k-10) for p prime and k>=1. (End)

A068328 Arithmetic derivatives of the squarefree numbers.

Original entry on oeis.org

0, 1, 1, 1, 5, 1, 7, 1, 1, 9, 8, 1, 1, 10, 13, 1, 15, 1, 31, 1, 14, 19, 12, 1, 21, 16, 1, 41, 1, 25, 1, 20, 1, 16, 22, 31, 1, 1, 33, 18, 61, 1, 26, 59, 1, 1, 39, 18, 71, 1, 43, 1, 22, 45, 32, 1, 20, 34, 49, 24, 1, 1, 91, 1, 71, 55, 1, 1, 87, 40, 1, 101, 28, 61, 24, 63, 44, 1, 46
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 27 2002

Keywords

Comments

a(n) and A005117(n) are coprime, cf. A085731. - Reinhard Zumkeller, May 10 2011

Examples

			a(65) = d(A005117(65)) = d(105) = d(3*35) = 3*d(35)+d(3)*35 = 3*d(5*7)+1*35 = 3*d(5*7)+1*35 = 3*(5*d(7)+d(5)*7)+35 = 3*(5*1+1*7)+35 = 3*12+35 = 71, where d(n) = A003415(n).
With d(1)=0, d(prime) = 1 and d(m*n) = d(m)*n + m*d(n).
		

Crossrefs

Programs

  • Haskell
    a068328 = a003415 . a005117 -- Reinhard Zumkeller, May 10 2011
  • Mathematica
    ad[n_] := ad[n] = n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ad[1] = 0; Table[ad[k], {k, Select[Range[150], SquareFreeQ]}] (* Amiram Eldar, Mar 04 2024 *)

Formula

a(n) = A003415(A005117(n)).
a(n) = A069359(A005117(n)).
a(n) = Sum_{prime p | A005117(n)} A005117(n)/p.

A329350 a(n) = Product_{d|n} A276086(d)^A010051(n/d).

Original entry on oeis.org

1, 2, 2, 3, 2, 18, 2, 9, 6, 54, 2, 45, 2, 30, 108, 15, 2, 150, 2, 405, 60, 270, 2, 375, 18, 150, 30, 675, 2, 33750, 2, 225, 540, 1350, 180, 3125, 2, 750, 300, 5625, 2, 281250, 2, 10125, 4500, 6750, 2, 140625, 10, 56250, 2700, 16875, 2, 468750, 1620, 84375, 1500, 33750, 2, 65625, 2, 42, 22500, 21, 900, 236250, 2, 567, 13500, 425250, 2, 21875
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Crossrefs

Cf. A010051, A069359, A276085, A276086, A329351 (rgs-transform).
Cf. also A329352, A329380.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A329350(n) = { my(m=1); fordiv(n,d,if(isprime(n/d), m *= A276086(d))); (m); };

Formula

a(n) = Product_{d|n} A276086(d)^A010051(n/d).
A276085(a(n)) = A069359(n).

A230593 a(n) = n * Sum_{q|n} 1 / q, where q are noncomposite numbers (A008578) dividing n.

Original entry on oeis.org

1, 3, 4, 6, 6, 11, 8, 12, 12, 17, 12, 22, 14, 23, 23, 24, 18, 33, 20, 34, 31, 35, 24, 44, 30, 41, 36, 46, 30, 61, 32, 48, 47, 53, 47, 66, 38, 59, 55, 68, 42, 83, 44, 70, 69, 71, 48, 88, 56, 85, 71, 82, 54, 99, 71, 92, 79, 89, 60, 122, 62, 95, 93, 96, 83, 127
Offset: 1

Views

Author

Jaroslav Krizek, Oct 25 2013

Keywords

Examples

			For n = 6: a(6) = 6 * (1/1 + 1/2 + 1/3) = 11.
		

Crossrefs

Coincides with A129283 on squarefree numbers, A005117.

Programs

  • Mathematica
    a[n_] := n * DivisorSum[n, 1/# &, !CompositeQ[#] &]; Array[a, 100] (* Amiram Eldar, Nov 12 2021 *)
  • PARI
    A230593(n) = sumdiv(n,d,((1==d)||isprime(d))*(n/d)); \\ Antti Karttunen, Nov 12 2021

Formula

For n > 1, a(n) = n + n * Sum_(p|n) 1 / p, where p are primes dividing n.
a(n) = A069359(n) + n.
a(n) = Sum_{d|n} A080339(d) * A000027(n/d).
a(n) = A080339(n) * A000027(n), where operation * denotes Dirichlet convolution, i.e. convolution of type: a(n) = Sum_{d|n} b(d) * c(n/d).
For p, q = distinct primes, a(p) = p + 1, a(pq) = pq - 1.
From Antti Karttunen, Nov 12 2021: (Start)
a(n) = A129283(n) - A329039(n).
a(A005117(n)) = A129283(A005117(n)), for all n >= 1.
(End)
For p prime, k>=1, a(p^k) = p^(k-1) * (p+1). - Bernard Schott, Nov 12 2021

A318320 a(n) = (psi(n) - phi(n))/2.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 10, 1, 9, 8, 8, 1, 15, 1, 14, 10, 13, 1, 20, 5, 15, 9, 18, 1, 32, 1, 16, 14, 19, 12, 30, 1, 21, 16, 28, 1, 42, 1, 26, 24, 25, 1, 40, 7, 35, 20, 30, 1, 45, 16, 36, 22, 31, 1, 64, 1, 33, 30, 32, 18, 62, 1, 38, 26, 60, 1, 60, 1, 39, 40, 42, 18, 72, 1, 56, 27, 43, 1, 84, 22, 45, 32, 52, 1, 96
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Differs from A069359 for the first time at n=30, where a(30) = 32, while A069359(30) = 31.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); psi[1] = 1; a[n_] := (psi[n] - EulerPhi[n])/2; Array[a, 100] (* Amiram Eldar, Dec 05 2023 *)
  • PARI
    A318320(n) = sumdiv(n,d,(-1==moebius(n/d))*d);
    
  • PARI
    A318320(n) = ((n*sumdivmult(n, d, issquarefree(d)/d))-eulerphi(n))/2;

Formula

a(n) = (A001615(n) - A000010(n))/2 = A292786(n)/2.
a(n) = A291784(n) - A000010(n).
a(n) = A318326(n) + A318442(n).
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = 9/(4*Pi^2) = 0.227972... . - Amiram Eldar, Dec 05 2023
Previous Showing 31-40 of 63 results. Next