cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A329351 Lexicographically earliest infinite sequence such that a(i) = a(j) => A329350(i) = A329350(j) for all i, j.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 4, 12, 9, 17, 2, 18, 2, 19, 20, 21, 22, 23, 2, 24, 25, 26, 2, 27, 2, 28, 29, 30, 2, 31, 32, 33, 34, 35, 2, 36, 37, 38, 39, 18, 2, 40, 2, 41, 42, 43, 44, 45, 2, 46, 47, 48, 2, 49, 2, 50, 51, 52, 44, 53, 2, 54, 55, 56, 2, 57, 58, 59, 60, 61, 2, 62, 63, 64, 65, 66, 29, 67, 2, 68, 69
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Comments

Restricted growth sequence transform of A329350.
For all i, j:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A069359(i) = A069359(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A329350(n) = { my(m=1); fordiv(n,d,if(isprime(n/d), m *= A276086(d))); (m); };
    v329351 = rgs_transform(vector(up_to, n, A329350(n)));
    A329351(n) = v329351[n];

A276085 Primorial base log-function: fully additive with a(p) = p#/p, where p# = A034386(p).

Original entry on oeis.org

0, 1, 2, 2, 6, 3, 30, 3, 4, 7, 210, 4, 2310, 31, 8, 4, 30030, 5, 510510, 8, 32, 211, 9699690, 5, 12, 2311, 6, 32, 223092870, 9, 6469693230, 5, 212, 30031, 36, 6, 200560490130, 510511, 2312, 9, 7420738134810, 33, 304250263527210, 212, 10, 9699691, 13082761331670030, 6, 60, 13, 30032, 2312, 614889782588491410, 7, 216, 33, 510512, 223092871, 32589158477190044730, 10
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Completely additive with a(p^e) = e * A002110(A000720(p)-1).
This is a left inverse of A276086 ("primorial base exp-function"), hence the name "primorial base log-function". When the domain is restricted to the terms of A048103, this works also as a right inverse, as A276086(a(A048103(n))) = A048103(n) for all n >= 1. - Antti Karttunen, Apr 24 2022
On average, every third term is a multiple of 4. See A369001. - Antti Karttunen, May 26 2024

Crossrefs

A left inverse of A276086.
Positions of multiples of k in this sequence, for k=2, 3, 4, 5, 8, 27, 3125: A003159, A339746, A369002, A373140, A373138, A377872, A377878.
Cf. A036554 (positions of odd terms), A035263, A096268 (parity of terms).
Cf. A372575 (rgs-transform), A372576 [a(n) mod 360], A373842 [= A003415(a(n))].
Cf. A373145 [= gcd(A003415(n), a(n))], A373361 [= gcd(n, a(n))], A373362 [= gcd(A001414(n), a(n))], A373485 [= gcd(A083345(n), a(n))], A373835 [= gcd(bigomega(n), a(n))], and also A373367 and A373147 [= A003415(n) mod a(n)], A373148 [= a(n) mod A003415(n)].
Other completely additive sequences with primes p mapped to a function of p include: A001222 (with a(p)=1), A001414 (with a(p)=p), A059975 (with a(p)=p-1), A341885 (with a(p)=p*(p+1)/2), A373149 (with a(p)=prevprime(p)), A373158 (with a(p)=p#).
Cf. also A276075 for factorial base and A048675, A054841 for base-2 and base-10 analogs.

Programs

  • Mathematica
    nn = 60; b = MixedRadix[Reverse@ Prime@ Range@ PrimePi[nn + 1]]; Table[FromDigits[#, b] &@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, nn}] (* Version 10.2, or *)
    f[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ w - 1]], Reverse@ w}]; Table[f@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, 60}] (* Michael De Vlieger, Aug 30 2016 *)
  • PARI
    A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); }; \\ Antti Karttunen, Nov 11 2024
    
  • Python
    from sympy import primorial, primepi, factorint
    def a002110(n):
        return 1 if n<1 else primorial(n)
    def a(n):
        f=factorint(n)
        return sum(f[i]*a002110(primepi(i) - 1) for i in f)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 22 2017

Formula

a(1) = 0; for n > 1, a(n) = a(A028234(n)) + (A067029(n) * A002110(A055396(n)-1)).
a(1) = 0, a(n) = (e1*A002110(i1-1) + ... + ez*A002110(iz-1)) when n = prime(i1)^e1 * ... * prime(iz)^ez.
Other identities.
For all n >= 0:
a(A276086(n)) = n.
a(A000040(1+n)) = A002110(n).
a(A002110(1+n)) = A143293(n).
From Antti Karttunen, Apr 24 & Apr 29 2022: (Start)
a(A283477(n)) = A283985(n).
a(A108951(n)) = A346105(n). [The latter has a similar additive formula as this sequence, but instead of primorials, uses their partial sums]
When applied to sequences where a certain subset of the divisors of n has been multiplicatively encoded with the help of A276086, this yields a corresponding number-theoretical sequence, i.e. completes their computation:
a(A319708(n)) = A001065(n) and a(A353564(n)) = A051953(n).
a(A329350(n)) = A069359(n) and a(A329380(n)) = A323599(n).
In the following group, the sum of the rhs-sequences is n [on each row, as say, A328841(n)+A328842(n)=n], because the pointwise product of the corresponding lhs-sequences is A276086:
a(A053669(n)) = A053589(n) and a(A324895(n)) = A276151(n).
a(A328571(n)) = A328841(n) and a(A328572(n)) = A328842(n).
a(A351231(n)) = A351233(n) and a(A327858(n)) = A351234(n).
a(A351251(n)) = A351253(n) and a(A324198(n)) = A351254(n).
The sum or difference of the rhs-sequences is A108951:
a(A344592(n)) = A346092(n) and a(A346091(n)) = A346093(n).
a(A346106(n)) = A346108(n) and a(A346107(n)) = A346109(n).
Here the two sequences are inverse permutations of each other:
a(A328624(n)) = A328625(n) and a(A328627(n)) = A328626(n).
a(A346102(n)) = A328622(n) and a(A346233(n)) = A328623(n).
a(A346101(n)) = A289234(n). [Self-inverse]
Other correspondences:
a(A324350(x,y)) = A324351(x,y).
a(A003961(A276086(n))) = A276154(n). [The primorial base left shift]
a(A276076(n)) = A351576(n). [Sequence reinterpreting factorial base representation as a primorial base representation]
(End)

Extensions

Name amended by Antti Karttunen, Apr 24 2022
Name simplified, the old name moved to the comments - Antti Karttunen, Jun 23 2024

A069359 a(n) = n * Sum_{p|n} 1/p where p are primes dividing n.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 10, 1, 9, 8, 8, 1, 15, 1, 14, 10, 13, 1, 20, 5, 15, 9, 18, 1, 31, 1, 16, 14, 19, 12, 30, 1, 21, 16, 28, 1, 41, 1, 26, 24, 25, 1, 40, 7, 35, 20, 30, 1, 45, 16, 36, 22, 31, 1, 62, 1, 33, 30, 32, 18, 61, 1, 38, 26, 59, 1, 60, 1, 39, 40, 42, 18, 71, 1, 56
Offset: 1

Views

Author

Benoit Cloitre, Apr 15 2002

Keywords

Comments

Coincides with arithmetic derivative on squarefree numbers: a(A005117(n)) = A068328(n) = A003415(A005117(n)). - Reinhard Zumkeller, Jul 20 2003, Clarified by Antti Karttunen, Nov 15 2019
a(n) = n-1 iff n = 1 or n is a primary pseudoperfect number A054377. - Jonathan Sondow, Apr 16 2014
a(1) = 0 by the standard convention for empty sums.
“Seva” on the MathOverflow link asks if the iterates of this sequence are all eventually 0. - Charles R Greathouse IV, Feb 15 2019

Examples

			a(12) = 10 because the prime divisors of 12 are 2 and 3 so we have: 12/2 + 12/3 = 6 + 4 = 10. - _Geoffrey Critzer_, Mar 17 2015
		

Crossrefs

Cf. A322068 (partial sums), A323599 (Inverse Möbius transform).
Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), this sequence (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Magma
    [0] cat [n*&+[1/p: p in PrimeDivisors(n)]:n in [2..80]]; // Marius A. Burtea, Jan 21 2020
    
  • Maple
    A069359 := n -> add(n/d, d = select(isprime, numtheory[divisors](n))):
    seq(A069359(i), i = 1..20); # Peter Luschny, Jan 31 2012
    # second Maple program:
    a:= n-> n*add(1/i[1], i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 23 2019
  • Mathematica
    f[list_, i_] := list[[i]]; nn = 100; a = Table[n, {n, 1, nn}]; b =
    Table[If[PrimeQ[n], 1, 0], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Mar 17 2015 *)
  • PARI
    a(n) = n*sumdiv(n, d, isprime(d)/d); \\ Michel Marcus, Mar 18 2015
    
  • PARI
    a(n) = my(ps=factor(n)[,1]~);sum(k=1,#ps,n\ps[k]) \\ Franklin T. Adams-Watters, Apr 09 2015
    
  • Python
    from sympy import primefactors
    def A069359(n): return sum(n//p for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
  • Sage
    def A069359(n) :
        D = filter(is_prime, divisors(n))
        return add(n/d for d in D)
    print([A069359(i) for i in (1..20)]) # Peter Luschny, Jan 31 2012
    

Formula

G.f.: Sum(x^p(j)/(1-x^p(j))^2,j>=1), where p(j) is the j-th prime. - Vladeta Jovovic, Mar 29 2006
a(n) = A230593(n) - n. a(n) = A010051(n) (*) A000027(n), where operation (*) denotes Dirichlet convolution, that is, convolution of type: a(n) = Sum_(d|n) b(d) * c(n/d) = Sum_{d|n} A010051(d) * A000027(n/d). - Jaroslav Krizek, Nov 07 2013
a(A054377(n)) = A054377(n) - 1. - Jonathan Sondow, Apr 16 2014
Dirichlet g.f.: zeta(s - 1)*primezeta(s). - Geoffrey Critzer, Mar 17 2015
Sum_{k=1..n} a(k) ~ A085548 * n^2 / 2. - Vaclav Kotesovec, Feb 04 2019
From Antti Karttunen, Nov 15 2019: (Start)
a(n) = Sum_{d|n} A008683(n/d)*A323599(d).
a(n) = A003415(n) - A329039(n) = A230593(n) - n = A306369(n) - A000010(n).
a(n) = A276085(A329350(n)) = A048675(A329352(n)).
a(A276086(n)) = A329029(n), a(A328571(n)) = A329031(n).
(End)
a(n) = Sum_{d|n} A000010(d) * A001221(n/d). - Torlach Rush, Jan 21 2020
a(n) = Sum_{k=1..n} omega(gcd(n, k)). - Ilya Gutkovskiy, Feb 21 2020
a(p^k) = p^(k-1) for p prime and k>=1. - Wesley Ivan Hurt, Jul 15 2025

A380459 a(n) = Product_{d|n} A276086(d)^A349394(n/d).

Original entry on oeis.org

1, 2, 2, 12, 2, 18, 2, 1296, 48, 54, 2, 1620, 2, 30, 108, 25194240, 2, 4050, 2, 131220, 60, 270, 2, 12150000, 576, 150, 3317760, 67500, 2, 33750, 2, 142818689064960000, 540, 1350, 180, 2050312500, 2, 750, 300, 1195742250000, 2, 281250, 2, 82012500, 26244000, 6750, 2, 92264062500000000, 1280, 13668750, 2700, 42187500, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2025

Keywords

Crossrefs

Cf. A003415, A276085, A276086, A349394, A380460 (rgs-transform).
Cf. also A329350, A329380.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A349394(n) = { my(p=0, e); if((e=isprimepower(n, &p)), p^(e-1), 0); };
    A380459(n) = { my(m=1); fordiv(n, d, m *= A276086(d)^A349394(n/d)); (m); };

Formula

For n >= 1, A276085(a(n)) = A003415(n).

A329380 a(n) = Product_{d|n} A276086(d)^A001221(n/d).

Original entry on oeis.org

1, 2, 2, 6, 2, 72, 2, 54, 12, 216, 2, 9720, 2, 120, 432, 810, 2, 64800, 2, 262440, 240, 1080, 2, 32805000, 36, 600, 360, 243000, 2, 28343520000, 2, 182250, 2160, 5400, 720, 27337500000, 2, 3000, 1200, 13286025000, 2, 72900000000, 2, 32805000, 11664000, 27000, 2, 69198046875000, 20, 218700000, 10800, 30375000, 2, 911250000000, 6480, 184528125000, 6000
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Crossrefs

Cf. A001221, A276085, A276086, A323599, A329381 (rgs-transform).
Cf. also A329350.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A329380(n) = { my(m=1); fordiv(n,d,m *= A276086(d)^omega(n/d)); (m); };

Formula

a(n) = Product_{d|n} A276086(d)^A001221(n/d).
A276085(a(n)) = A323599(n).

A329352 a(n) = Product_{d|n} A019565(d)^A010051(n/d).

Original entry on oeis.org

1, 2, 2, 3, 2, 18, 2, 5, 6, 30, 2, 75, 2, 90, 60, 7, 2, 210, 2, 105, 180, 126, 2, 245, 10, 210, 14, 525, 2, 66150, 2, 11, 252, 66, 300, 1155, 2, 198, 420, 385, 2, 173250, 2, 825, 2940, 990, 2, 847, 30, 3234, 132, 1155, 2, 15246, 420, 2695, 396, 2310, 2, 2223375, 2, 6930, 1540, 13, 700, 64350, 2, 195, 1980, 171990, 2, 5005, 2, 390, 32340, 975, 1260
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Examples

			The divisors of 30 are [1, 2, 3, 5, 6, 10, 15, 30], of which only d = 6, 10 and 15 are such that 30/d is a prime, thus a(n) = A019565(6) * A019565(10) * A019565(15) = 15 * 21 * 210 = 66150.
		

Crossrefs

Cf. A010051, A019565, A048675, A069359, A329353 (rgs-transform).
Cf. also A329350.
Differs from A300832 for the first time at n=30, where a(30) = 66150, while A300832(30) = 132300.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A329352(n) = { my(m=1); fordiv(n,d,if(isprime(n/d), m *= A019565(d))); (m); };

Formula

a(n) = Product_{d|n} A019565(d)^A010051(n/d).
For all n, A048675(a(n)) = A069359(n).
Showing 1-6 of 6 results.