A325199 Number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 2.
0, 0, 0, 2, 0, 2, 6, 3, 2, 9, 15, 12, 6, 12, 27, 38, 34, 22, 20, 43, 74, 94, 90, 67, 48, 69, 130, 194, 232, 230, 187, 132, 129, 218, 364, 497, 576, 578, 498, 367, 290, 378, 642, 977, 1264, 1435, 1448, 1290, 1000, 735, 728
Offset: 0
Examples
The a(3) = 2 through a(10) = 15 partitions (empty columns not shown): (3) (41) (33) (43) (521) (333) (433) (111) (2111) (42) (2221) (32111) (441) (442) (222) (4111) (522) (532) (411) (531) (541) (2211) (3222) (3322) (3111) (5211) (3331) (32211) (4222) (33111) (4411) (42111) (5221) (5311) (32221) (33211) (42211) (43111) (52111)
Links
Crossrefs
Programs
-
Mathematica
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; Table[Length[Select[IntegerPartitions[n],otbmax[#]-otb[#]==2&]],{n,0,30}]
Comments