A342935
Number of ordered triples (x, y, z) with gcd(x, y, z) = 1 and 1 <= {x, y, z} <= 2^n.
Original entry on oeis.org
1, 7, 55, 439, 3433, 27541, 218773, 1749223, 13964245, 111725197, 893433661, 7147232467, 57169672861, 457364647435, 3658819119307, 29270432746633, 234161501271463, 1873293863661469, 14986321908515773, 119890565631185995, 959124025074311215, 7672992332048493361
Offset: 0
For n=3, the size of the division cube matrix is 8 X 8 X 8:
.
: : : : : : : : :
.
z = 4 | 1 2 3 4 5 6 7 8
------+----------------------
1 /| o o o o o o o o 8
2 / | o . o . o . o . 4 64 Sum (z = 1)
3/ | o o o o o o o o 8 /
/ o . 4 48 Sum (z = 2)
z = 5 |/1 2 3 4 5 6 7 8 o 8 /
------+---------------------- 4 60 Sum (z = 3)
1 /| o o o o o o o o 8 8 /
2 / | o o o o o o o o 8 4 /
3/ | o o o o o o o o 8 --/
/ o o 8 48 Sum (z = 4)
z = 6 |/1 2 3 4 5 6 7 8 o 7 /
------+---------------------- 8 /
1 /| o o o o o o o o 8 8 /
2 / | o . o . o . o . 4 8 /
3/ | o o o o o o o o 6 --/
/ o . 4 63 Sum (z = 5)
z = 7 |/1 2 3 4 5 6 7 8 o 8 /
------+---------------------- 3 /
1 /| o o o o o o o o 8 8 /
2 / | o o o o o o o o 8 4 /
3/ | o o o o o o o o 8 --/
/ o o 8 45 Sum (z = 6)
z = 8 |/1 2 3 4 5 6 7 8 o 8 /
------+---------------------- 8 /
1 | o o o o o o o o 8 7 /
2 | o . o . o . o . 4 8 /
3 | o o o o o o o o 8 --/
4 | o . o . o . o . 4 63 Sum (z = 7)
5 | o o o o o o o o 8 /
6 | o . o . o . o . 4 /
7 | o o o o o o o o 8 /
8 | o . o . o . o . 4 /
--/
48 Sum (z = 8)
|
---
439 Cube Sum (z = 1..8)
-
Array[Sum[MoebiusMu[k]*Floor[(2^#)/k]^3, {k, 2^# + 1}] &, 22, 0] (* Michael De Vlieger, Apr 05 2021 *)
-
from labmath import mobius
def A342935(n): return sum(mobius(k)*(2**n//k)**3 for k in range(1, 2**n+1))
A343193
Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 10^n.
Original entry on oeis.org
1, 9279, 92434863, 923988964495, 9239427676877311, 92393887177379735327, 923938441006918271400831, 9239384074081430755652624559, 92393840333765561759423951663423, 923938402972369921481535120722882015
Offset: 0
(1,2,2,3) is counted, but (2,4,4,6) is not, because gcd = 2.
For n=1, the size of the division tesseract matrix is 10 X 10 X 10 X 10:
.
o------------x(w=10)------------o
/|. ./ |
/ |. ./ |
/ |. ./ |
/ |. ./ |
/ |. z(w=10) |
/ |. . / |
/ |. . / |
/ |. . / y(w=10)
o------------------------------.o |
|\ /|¯¯¯¯¯¯x(w=1)¯¯¯¯¯¯/. | |
| w / | /.| | |
| \ z(w=1)| /. | | |
| \ / |y(w=1) /. | | |
| \/-------------------/. | | |
| | | | | | w | sums
| | Cube at w = 1 | | | | ----+-----
| | 10 X 10 X 10 | _ _| |---------o 1 | 1000
| | contains | / | / 2 | 875
| | 1000 | / | / 3 | 973
| | completely | / | / 4 | 875
| | reduced fractions | / | / 5 | 992
| | |/ | / 6 | 849
| /------------------- \ | / 7 | 999
| / \ | / 8 | 875
| w w | / 9 | 973
| / \ | / 10 | 868
| / \ |/ ----+-----
o -------------------------------o sum for a(1) | 9279
- Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.
Related counts of k-tuples:
A343527
Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 2^n.
Original entry on oeis.org
1, 15, 239, 3823, 60735, 972191, 15517679, 248252879, 3969108895, 63506982943, 1015951568815, 16255093526239, 260068569617727, 4161109496115135, 66577084386669199, 1065232436999055375, 17043668344393625999, 272698739815301095247, 4363176901343767529551, 69810828455823683068415, 1116973047989955380768527
Offset: 0
.
For n=3, the size of the gris is 8 X 8 X 8 X 8:
.
o------------x(w=8)-------------o
/|. ./ |
/ |. ./ |
/ |. ./ |
/ |. ./ |
/ |. z(w=8) |
/ |. . / |
/ |. . / |
/ |. . / y(w=8)
o------------------------------.o |
|\ /|¯¯¯¯¯¯x(w=1)¯¯¯¯¯¯/. | |
| w / | /.| | |
| \ z(w=1)| /. | | |
| \ / |y(w=1) /. | | |
| \/-------------------/. | | |
| | | | | | w | sums
| | Cube at w = 1 | | | | ----+-----
| | 8 X 8 X 8 | _ _| |---------o 1 | 512
| | contains | / | / 2 | 448
| | 512 | / | / 3 | 504
| | completely | / | / 4 | 448
| | reduced fractions | / | / 5 | 511
| | |/ | / 6 | 441
| /------------------- \ | / 7 | 511
| / \ | / 8 | 448
| w w | / ----+-----
| / \ | / sum for a(3) | 3823
| / \ |/
o -------------------------------o
A344527
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) is the number of ordered k-tuples (x_1, x_2, ..., x_k) with gcd(x_1, x_2, ..., x_k) = 1 (1 <= {x_1, x_2, ..., x_k} <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 11, 1, 1, 31, 79, 55, 19, 1, 1, 63, 241, 239, 115, 23, 1, 1, 127, 727, 991, 607, 181, 35, 1, 1, 255, 2185, 4031, 3091, 1199, 307, 43, 1, 1, 511, 6559, 16255, 15559, 7501, 2303, 439, 55, 1, 1, 1023, 19681, 65279, 77995, 45863, 16531, 3823, 637, 63, 1
Offset: 1
G.f. of column 3: (1/(1 - x)) * Sum_{i>=1} mu(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^3.
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 7, 15, 31, 63, ...
1, 7, 25, 79, 241, 727, ...
1, 11, 55, 239, 991, 4031, ...
1, 19, 115, 607, 3091, 15559, ...
1, 23, 181, 1199, 7501, 45863, ...
-
T[n_, k_] := Sum[MoebiusMu[j] * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 22 2021 *)
-
T(n, k) = sum(j=1, n, moebius(j)*(n\j)^k);
-
T(n, k) = n^k-sum(j=2, n, T(n\j, k));
-
from functools import lru_cache
from itertools import count, islice
@lru_cache(maxsize=None)
def A344527_T(n,k):
if n == 0:
return 0
c, j, k1 = 1, 2, n//2
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A344527_T(k1,k)
j, k1 = j2, n//j2
return n*(n**(k-1)-1)-c+j
def A344527_gen(): # generator of terms
return (A344527_T(k+1, n-k) for n in count(1) for k in range(n))
A344527_list = list(islice(A344527_gen(),30)) # Chai Wah Wu, Nov 02 2023
A015616
Number of triples (i,j,k) with 1 <= i < j < k <= n and gcd(i,j,k) = 1.
Original entry on oeis.org
0, 0, 1, 4, 10, 19, 34, 52, 79, 109, 154, 196, 262, 325, 409, 493, 613, 712, 865, 997, 1171, 1336, 1567, 1747, 2017, 2251, 2548, 2818, 3196, 3472, 3907, 4267, 4717, 5125, 5665, 6079, 6709, 7222, 7858, 8410, 9190, 9748, 10609, 11299, 12127
Offset: 1
For n=6, the a(6) = 19 solutions are the binomial(6,3) = (6*5*4)/(1*2*3) = 20 possible triples minus the triple (2,4,6) with GCD=2.
-
f:=proc(n) local i,j,k,t1,t2,t3; t1:=0; for i from 1 to n-2 do for j from i+1 to n-1 do t2:=gcd(i,j); for k from j+1 to n do t3:=gcd(t2,k); if t3 = 1 then t1:=t1+1; fi; od: od: od: t1; end;
# program based on Moebius transform, partial sums of A000741:
with(numtheory):
b:= proc(n) option remember;
add(mobius(n/d)*(d-2)*(d-1)/2, d=divisors(n))
end:
a:= proc(n) option remember;
b(n) +`if`(n=1, 0, a(n-1))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Feb 08 2011
-
a[n_] := (cnt = 0; Do[cnt += Boole[GCD[i, j, k] == 1], {i, 1, n-2}, {j, i+1, n-1}, {k, j+1, n}]; cnt); Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Mar 05 2013 *)
-
print1(c=0);for(k=1,99,for(j=1,k-1, gcd(j,k)==1 && (c+=j-1) && next; for(i=1,j-1, gcd([i,j,k])>1 || c++)); print1(", "c))
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A015616(n):
if n <= 1:
return 0
c, j = n*(n-1)*(n-2)//6, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c -= (j2-j)*A015616(k1)
j, k1 = j2, n//j2
return c # Chai Wah Wu, Mar 30 2021
A343282
Number of ordered 5-tuples (v,w, x, y, z) with gcd(v, w, x, y, z) = 1 and 1 <= {v, w, x, y, z} <= 10^n.
Original entry on oeis.org
1, 96601, 9645718621, 964407482028001, 96438925911789115351, 9643875373658964992585011, 964387358678775616636890654841, 96438734235127451288511508421855851, 9643873406165059293451290072800801506621
Offset: 0
- Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.
Related counts of k-tuples:
A344038
Number of ordered 6-tuples (a,b,c,d,e,f) with gcd(a,b,c,d,e,f)=1 (1<= {a,b,c,d,e,f} <= 10^n).
Original entry on oeis.org
1, 983583, 983029267047, 982960635742968103, 982953384128772770413831, 982952672223441253533233827367, 982952600027678075050509511271466303, 982952593055042000417993486008754893529583, 982952592342881094406730790044111038427637071855
Offset: 0
Related counts of k-tuples:
-
a(n)={sum(k=1, 10^n+1, moebius(k)*(10^n\k)^6)} \\ Andrew Howroyd, May 08 2021
-
from labmath import mobius
def A344038(n): return sum(mobius(k)*(10**n//k)**6 for k in range(1, 10**n+1))
A332468
a(n) = Sum_{k=1..n} mu(k) * floor(n/k)^n.
Original entry on oeis.org
1, 3, 25, 239, 3091, 45863, 821227, 16711423, 387138661, 9990174303, 285262663291, 8913906888703, 302861978789371, 11111328334033327, 437889112287422401, 18446462446101903615, 827238009323454485641, 39346257879101283645743, 1978418304199236175597105
Offset: 1
-
[&+[MoebiusMu(k)*Floor(n/k)^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 13 2020
-
Table[Sum[MoebiusMu[k] Floor[n/k]^n, {k, 1, n}], {n, 1, 19}]
b[n_, k_] := b[n, k] = n^k - Sum[b[Floor[n/j], k], {j, 2, n}]; a[n_] := b[n, n]; Table[a[n], {n, 1, 19}]
-
a(n)={sum(k=1, n, moebius(k) * floor(n/k)^n)} \\ Andrew Howroyd, Feb 13 2020
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A344527_T(n,k):
if n == 0:
return 0
c, j, k1 = 1, 2, n//2
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A344527_T(k1,k)
j, k1 = j2, n//j2
return n*(n**(k-1)-1)-c+j
def A332468(n): return A344527_T(n,n) # Chai Wah Wu, Nov 02 2023
A344596
a(n) = Sum_{k=1..n} mu(k) * (floor(n/k)^3 - floor((n-1)/k)^3).
Original entry on oeis.org
1, 6, 18, 30, 60, 66, 126, 132, 198, 204, 330, 276, 468, 414, 552, 552, 816, 630, 1026, 840, 1116, 1050, 1518, 1128, 1740, 1476, 1890, 1692, 2436, 1704, 2790, 2256, 2820, 2544, 3384, 2556, 3996, 3186, 3960, 3408, 4920, 3420, 5418, 4260, 5112, 4686, 6486, 4560, 6930, 5340, 6816
Offset: 1
-
a[n_] := Sum[MoebiusMu[k] * First @ Differences @ (Quotient[{n - 1, n}, k]^3), {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 24 2021 *)
-
a(n) = sum(k=1, n, moebius(k)*((n\k)^3-((n-1)\k)^3));
-
a(n) = if(n<2, n, 3*sumdiv(n, d, moebius(n/d)*(d-1)*d));
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^3))
-
my(N=66, x='x+O('x^N)); Vec(x+6*sum(k=1, N, moebius(k)*x^(2*k)/(1-x^k)^3))
-
from sympy import mobius, divisors
def A344596(n): return 3*sum(mobius(n//d)*d*(d-1) for d in divisors(n,generator=True)) if n>1 else 1 # Chai Wah Wu, May 09 2025
A101467
Number of distinct n-term ratios x_1 : x_2 : ... : x_n where each x_i is in the range [1-10].
Original entry on oeis.org
10, 63, 841, 9279, 96601, 983583, 9919561, 99602559, 998026681, 9990174303, 99950992681, 999755323839, 9998777694361, 99993891685023, 999969468040201, 9999847368997119, 99999236931275641, 999996184915051743, 9999980925350886121, 99999904629080526399
Offset: 1
Su Jianning (sujianning(AT)yahoo.com.cn), Jan 21 2005
For n=2: Consider the ratios 1:1, 1:2, ..., 1:10, 2:1, 2:2, ..., 2:10, ..., 10:1, 10:2, ..., 10:10. We get 63 different ratios from the 100 numbers list above after removing duplication. So a(2) = 63, and this is A018805(10).
-
1, seq(10^n - 5^n - 3^n - 2^n + 1, n=2..20); # Robert Israel, Nov 28 2014
-
Vec(x*(2700*x^5-5460*x^4+3579*x^3-1028*x^2+147*x-10)/((x-1)*(2*x-1)*(3*x-1)*(5*x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Nov 28 2014
Comments