A129186
Right shift operator generating 1's in shifted spaces.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
First few rows of the triangle are:
1;
1, 0;
0, 1, 0;
0, 0, 1, 0;
0, 0, 0, 1, 0;
...
Generalized Eulerian triangles: this sequence (m=0),
A173018 (m=1),
A292604 (m=2).
-
gf := 1 + z/(1 - x*z): ser := series(gf, z, 16): c := k -> coeff(ser, z, k):
seq(seq(coeff(c(n), x, k), k=0..n), n=0..14); # Peter Luschny, Jul 07 2019
-
Join[{1},Flatten[Table[PadLeft[{1,0},n,0],{n,2,20}]]] (* Harvey P. Dale, Aug 26 2019 *)
A132200
Numbers in (4,4)-Pascal triangle .
Original entry on oeis.org
1, 4, 4, 4, 8, 4, 4, 12, 12, 4, 4, 16, 24, 16, 4, 4, 20, 40, 40, 20, 4, 4, 24, 60, 80, 60, 24, 4, 4, 28, 84, 140, 140, 84, 28, 4, 4, 32, 112, 224, 280, 224, 112, 32, 4, 4, 36, 144, 336, 504, 504, 336, 144, 36, 4, 4, 40, 180, 480, 840, 1008, 840, 480, 180, 40, 4
Offset: 0
Triangle begins:
1;
4, 4;
4, 8, 4;
4, 12, 12, 4;
4, 16, 24, 16, 4;
4, 20, 40, 40, 20, 4;
-
[1] cat [4*Binomial(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
-
Table[4*Binomial[n,k] -3*Boole[n==0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 03 2021 *)
-
def A132200(n,k): return 4*binomial(n,k) - 3*bool(n==0)
flatten([[A132200(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021
A183190
Triangle T(n,k), read by rows, given by (1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 4, 4, 1, 0, 8, 12, 6, 1, 0, 16, 32, 24, 8, 1, 0, 32, 80, 80, 40, 10, 1, 0, 64, 192, 240, 160, 60, 12, 1, 0, 128, 448, 672, 560, 280, 84, 14, 1, 0, 256, 1024, 1792, 1792, 1120, 448, 112, 16, 1, 0, 512, 2304, 4608, 5376, 4032, 2016, 672, 144, 18, 1, 0
Offset: 0
Triangle begins:
1;
1, 0;
2, 1, 0;
4, 4, 1, 0;
8, 12, 6, 1, 0;
16, 32, 24, 8, 1, 0;
32, 80, 80, 40, 10, 1, 0;
...
-
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n<2, 1-k, 2*T(n-1, k) +T(n-1, k-1)))
end:
seq(seq(T(n,k), k=0..n), n=0..12); # Alois P. Heinz, Nov 08 2019
-
T[n_, k_] /; 0 <= k <= n := T[n, k] = 2 T[n-1, k] + T[n-1, k-1];
T[0, 0] = T[1, 0] = 1; T[1, 1] = 0; T[, ] = 0;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 08 2019 *)
A381425
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of (1 + x/(1-x)^k)^k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 5, 1, 0, 1, 4, 12, 10, 1, 0, 1, 5, 22, 37, 18, 1, 0, 1, 6, 35, 92, 102, 30, 1, 0, 1, 7, 51, 185, 345, 258, 47, 1, 0, 1, 8, 70, 326, 880, 1188, 606, 70, 1, 0, 1, 9, 92, 525, 1881, 3851, 3796, 1335, 100, 1, 0, 1, 10, 117, 792, 3563, 10002, 15655, 11364, 2781, 138, 1, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 5, 12, 22, 35, 51, ...
0, 1, 10, 37, 92, 185, 326, ...
0, 1, 18, 102, 345, 880, 1881, ...
0, 1, 30, 258, 1188, 3851, 10002, ...
0, 1, 47, 606, 3796, 15655, 49468, ...
-
a(n, k) = sum(j=0, k, binomial(k, j)*binomial(n+(k-1)*j-1, n-j));
A351580
a(n) is the number of multisets of size n-1 consisting of permutations of n elements.
Original entry on oeis.org
1, 2, 21, 2600, 9078630, 1634935320144, 22831938997720867560, 34390564970975286088924022400, 7457911916650283082000186530740981347120, 300682790088737748950725540713718365319268411170195200, 2830053444386286847574443631356044745870287426798365860653876609636480
Offset: 1
Starting with the following men's ranking table of order 3, where row k represents man k's rankings, the 1 in the 2nd position of row 3 means that man #3 ranks woman #2 as his 1st choice.
213
321
213
Step 1: reorder columns so row 1 is in natural order:
123
231
123
Step 2: reorder rows 2 to n so rows are in lexical order:
123
123
231
a(3)=21 because there are 1+2+3+4+5+6 = 21 possibilities for the last two rows in lexical order, with 3!=6 possible permutations for each row.
The 21 tables for a(3) are the following:
123 123 123 123 123 123 123
123 123 123 123 123 123 132
123 132 213 231 312 321 132
.
123 123 123 123 123 123 123
132 132 132 132 213 213 213
213 231 312 321 213 231 312
.
123 123 123 123 123 123 123
213 231 231 231 312 312 321
321 231 312 321 312 321 321
A378320
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(2*n-2*r+k,r) * binomial(r,n-r)/(2*n-2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 2, 0, 1, 4, 6, 6, 3, 0, 1, 5, 10, 13, 11, 6, 0, 1, 6, 15, 24, 27, 22, 11, 0, 1, 7, 21, 40, 55, 57, 44, 22, 0, 1, 8, 28, 62, 100, 124, 121, 90, 44, 0, 1, 9, 36, 91, 168, 241, 278, 258, 187, 90, 0, 1, 10, 45, 128, 266, 432, 570, 620, 555, 392, 187, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 2, 6, 13, 24, 40, 62, ...
0, 3, 11, 27, 55, 100, 168, ...
0, 6, 22, 57, 124, 241, 432, ...
0, 11, 44, 121, 278, 570, 1077, ...
-
T(n, k, t=0, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378321
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(3*n-3*r+k,r) * binomial(r,n-r)/(3*n-3*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 3, 0, 1, 4, 6, 8, 6, 0, 1, 5, 10, 16, 19, 16, 0, 1, 6, 15, 28, 42, 50, 42, 0, 1, 7, 21, 45, 79, 114, 137, 114, 0, 1, 8, 28, 68, 135, 224, 322, 380, 322, 0, 1, 9, 36, 98, 216, 401, 652, 918, 1088, 918, 0, 1, 10, 45, 136, 329, 672, 1205, 1912, 2673, 3152, 2673, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 3, 8, 16, 28, 45, 68, ...
0, 6, 19, 42, 79, 135, 216, ...
0, 16, 50, 114, 224, 401, 672, ...
0, 42, 137, 322, 652, 1205, 2088, ...
-
T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A080234
Triangle whose rows are the differences of consecutive pairs of row elements of A080232.
Original entry on oeis.org
1, 1, -2, 1, -1, -1, 1, 0, -2, 0, 1, 1, -2, -2, 1, 1, 2, -1, -4, -1, 2, 1, 3, 1, -5, -5, 1, 3, 1, 4, 4, -4, -10, -4, 4, 4, 1, 5, 8, 0, -14, -14, 0, 8, 5, 1, 6, 13, 8, -14, -28, -14, 8, 13, 6, 1, 7, 19, 21, -6, -42, -42
Offset: 0
Rows are {1}, {1,-2}, {1,-1,-1}, {1,0,-2,0}, {1,1,-2,-2,1}, ...
Comments