A336214
a(n) = Sum_{k=0..n} k^n * binomial(n,k)^n, with a(0)=1.
Original entry on oeis.org
1, 1, 8, 270, 41984, 30706250, 94770093312, 1336016204844832, 76829717664330940416, 19838680914222199482800274, 20521247958509575370600000000000, 94285013320530947020636486516362047300, 1715947732437668013396578734960052732361179136
Offset: 0
-
Flatten[{1, Table[Sum[k^n*Binomial[n, k]^n, {k, 1, n}], {n, 1, 15}]}]
-
a(n) = if (n==0, 1, sum(k=0, n, k^n * binomial(n,k)^n)); \\ Michel Marcus, Jul 13 2020
A336828
a(n) = Sum_{k=0..n} binomial(n,k)^2 * k^n.
Original entry on oeis.org
1, 1, 8, 108, 2144, 56250, 1836792, 71799504, 3269445888, 169974711630, 9934458411800, 644825382429096, 46022332032100800, 3582265183110626740, 302002255041807372080, 27413749834141448520000, 2665789990569658618398720, 276477318687585566522176470
Offset: 0
Cf.
A000984,
A002457,
A037966,
A037972,
A072034,
A074334,
A187021,
A329444,
A329913,
A336214,
A341815.
-
Join[{1}, Table[Sum[Binomial[n, k]^2 k^n, {k, 0, n}], {n, 1, 17}]]
-
a(n) = sum(k=0, n, binomial(n, k)^2*k^n); \\ Michel Marcus, Aug 05 2020
A345876
a(n) = Sum_{k=0..n} binomial(2*n, n-k) * k^n.
Original entry on oeis.org
1, 1, 8, 90, 1408, 28350, 697344, 20264244, 679313408, 25805186550, 1095482736640, 51397070440716, 2640925289349120, 147491783753286700, 8895880971425939456, 576279075821454657000, 39905347440408027725824, 2941534126495441574472870, 229966392623413457628168192
Offset: 0
-
Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^n, {k, 0, n}], {n, 1, 20}]]
-
a(n) = sum(k=0, n, binomial(2*n, n-k) * k^n); \\ Michel Marcus, Oct 03 2021
A362702
Expansion of e.g.f. 1/(1 + LambertW(-x^2 * exp(x))).
Original entry on oeis.org
1, 0, 2, 6, 60, 500, 6150, 81522, 1300376, 23024808, 459915210, 10104914270, 243652575012, 6378414900156, 180405368976014, 5478759958122570, 177868544365861680, 6146407749811022672, 225262698504062963346, 8727083181657584963766
Offset: 0
A074932
Row sums of unsigned triangle A075513.
Original entry on oeis.org
1, 3, 18, 170, 2200, 36232, 725200, 17095248, 463936896, 14246942336, 488428297984, 18491942300416, 766293946203136, 34498781924766720, 1676731077272217600, 87501958444207351808, 4880017252828686155776
Offset: 1
E.g.f.: A(x) = x + 3*x^2/2! + 18*x^3/3! + 170*x^4/4! + 2200*x^5/5! +...
where exp(A(x)) = 1 + x + 4*x^2/2! + 28*x^3/3! + 288*x^4/4! + 3936*x^5/5! + 67328*x^6/6! +...+ A201595(n)*x^n/n! +...
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Victor J. W. Guo, Yiting Yang, Proof of a conjecture of Kløve on permutation codes under the Chebychev distance, arXiv:1704.01295 [cs.IT], 2017. Also in Designs, Codes and Cryptography, June 2017, Volume 83, Issue 3, pp 685-690.
- Torleiv Kløve, Spheres of Permutations under the Infinity Norm - Permutations with limited displacement, Reports in Informatics, Department of Informatics, University of Bergen, Norway, no. 376, November 2008.
-
Rest[CoefficientList[Series[Log[x-LambertW[-x*Exp[x]]]-Log[2*x], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 04 2012 *)
a[n_] := Sum[Binomial[n-1, k]*(k+1)^(n-1), {k, 0, n-1}]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Jul 09 2013, after Paul D. Hanna *)
-
{a(n)=sum(k=0,n-1,binomial(n-1,k)*(k+1)^(n-1))} \\ Paul D. Hanna, Aug 02 2012
-
{a(n)=local(A201595=serreverse(x-x*tanh(x+x^2*O(x^n)))/x);n!*polcoeff(log(A201595), n)} \\ Paul D. Hanna, Aug 02 2012
-
{a(n) = my(A); if( n<0, 0, A = O(x); for(k=1, n, A = log( (1 + exp( 2*x * exp(A))) / 2 )); n! * polcoeff(A, n))}; /* Michael Somos, Apr 10 2018 */
A336213
a(n) = Sum_{k=0..n} k^k * binomial(n,k)^n, with a(0)=1.
Original entry on oeis.org
1, 2, 9, 163, 12609, 3906251, 4835455813, 23882051929709, 470073929716006913, 36867039626275056203923, 11562789460238169439667262501, 14393917436542502296957220221339601, 72060131612303615870363237649174605005057, 1424448870088911493303605765206905153730451241313
Offset: 0
-
Table[1 + Sum[k^k * Binomial[n, k]^n, {k, 1, n}], {n, 0, 15}]
-
a(n) = if (n==0, 1, sum(k=0, n, k^k * binomial(n,k)^n)); \\ Michel Marcus, Jul 13 2020
A343928
a(n) = Sum_{k=0..n} (k!)^n * binomial(n,k).
Original entry on oeis.org
1, 2, 7, 244, 337061, 24923091206, 139331988275478727, 82607113404338664216300296, 6984967577834038055008791270166057993, 109110690950275218023122492287310115968068596613130, 395940866518366059877297056617763923418318903997411043997258716171
Offset: 0
-
a[n_] := Sum[(k!)^n * Binomial[n, k], {k, 0, n} ]; Array[a, 11, 0] (* Amiram Eldar, May 04 2021 *)
-
a(n) = sum(k=0, n, k!^n*binomial(n, k));
A355470
Expansion of Sum_{k>=0} (k^3 * x)^k/(1 - k^3 * x)^(k+1).
Original entry on oeis.org
1, 1, 66, 21222, 18927560, 36030104000, 125486684755152, 722272396672485568, 6391048590559497227904, 82362961035803105954736768, 1482370265813455598541301007360, 36031982428595760278113744699088384, 1150873035676373345725887922070318410752
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^3*x)^k/(1-k^3*x)^(k+1)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp(k^3*x)*(k^3*x)^k/k!)))
-
a(n) = sum(k=0, n, k^(3*n)*binomial(n, k));
A215080
T(n,k) = Sum_{j=0..k} (k-j)^n * binomial(n,j).
Original entry on oeis.org
1, 0, 1, 0, 1, 6, 0, 1, 11, 54, 0, 1, 20, 151, 680, 0, 1, 37, 413, 2569, 11000, 0, 1, 70, 1128, 9450, 52431, 217392, 0, 1, 135, 3104, 34416, 243255, 1251921, 5076400, 0, 1, 264, 8637, 125248, 1113027, 7025016, 34282879, 136761984, 0, 1, 521, 24327, 457807, 5064143, 38811015, 225930121, 1059812993, 4175432064, 0, 1, 1034, 69334, 1685266, 23031680, 212609518, 1465077802, 8026643702, 36519075583, 142469423360
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 6;
0, 1, 11, 54;
0, 1, 20, 151, 680;
0, 1, 37, 413, 2569, 11000;
0, 1, 70, 1128, 9450, 52431, 217392;
0, 1, 135, 3104, 34416, 243255, 1251921, 5076400;
0, 1, 264, 8637, 125248, 1113027, 7025016, 34282879, 136761984;
...
Row sums give 215077 (binomial convolution of descending powers).
-
Flatten[Table[Table[Sum[(k - j)^n*Binomial[n, j], {j, 0, k}], {k, 0, n}], {n, 0, 10}], 1]
A341815
a(n) = Sum_{k=0..n} binomial(n,k)^3 * k^n.
Original entry on oeis.org
1, 1, 12, 270, 8960, 406250, 23293872, 1617774592, 132075970560, 12397121784954, 1315528361642000, 155743010418063860, 20351866171905066240, 2909818652684404979440, 451849287590990124662400, 75730203998219999637000000, 13625593688459657260608782336, 2619521322904712777031960349850
Offset: 0
-
Join[{1}, Table[Sum[k^n * Binomial[n, k]^3, {k, 0, n}], {n, 1, 20}]]
Comments