cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A128454 Numbers k such that the absolute value of 14^k - k^14 is prime.

Original entry on oeis.org

1, 5, 11, 89, 101, 579, 655, 8115
Offset: 1

Views

Author

Alexander Adamchuk, Mar 03 2007

Keywords

Comments

a(9) > 50000. - Robert Price, Jun 17 2019

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[Abs[14^n - n^14]], Print[n]], {n, 10^4}] (* Ryan Propper, Mar 27 2007 *)
  • PARI
    is(n)=ispseudoprime(abs(14^n-n^14)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

One more term from Ryan Propper, Mar 27 2007

A099482 Semiprimes of the form 2^k - k^2.

Original entry on oeis.org

1927, 8023, 32543, 2096711, 8388079, 137438952103, 549755812367, 2199023253871, 8796093020359, 140737488353119, 562949953418911, 36028797018960943, 147573952589676408439, 37778931862957161703943
Offset: 1

Views

Author

Hugo Pfoertner, Oct 18 2004

Keywords

Examples

			a(2) = 8023 because 8023 = 71*113 = 2^13 - 13^2 = 2^A099481(2) - A099481(2)^2.
		

Crossrefs

Cf. A024012 2^n-n^2, A099481 2^k-k^2 is a semiprime, A072180 2^k-k^2 is prime, A075896 primes of the form 2^k-k^2.

Programs

  • Mathematica
    Select[Table[2^n - n^2, {n, 100}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 21 2012 *)

A117587 Numbers k such that 2^prime(k) - prime(k)^2 is prime.

Original entry on oeis.org

3, 4, 7, 8, 16, 23, 49, 89, 331, 497, 1122, 11222
Offset: 1

Views

Author

Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Apr 03 2006

Keywords

Comments

No more terms below 5000. - Giovanni Resta, Apr 03 2006
p is a prime element of the sequence A072180 iff pi(p) is a term of A117587. So since 119087 is a prime term of A072180, pi(119087)= 11222 is in the sequence. - Farideh Firoozbakht, Dec 08 2006

Examples

			4 is in the sequence because the 4th prime is 7 and 2^7 - 7^2 = 79 is a prime.
		

Crossrefs

Cf. A072180.

Programs

  • Maple
    a:=proc(n) if isprime(2^ithprime(n)-ithprime(n)^2) then n else fi end: seq(a(n),n=1..400); # Emeric Deutsch, Apr 06 2006
  • Mathematica
    Select[Range[1200], PrimeQ[2^# - #^2] &@ Prime@ # &] (* Michael De Vlieger, Feb 02 2019 *)
  • PARI
    for(i=1,100,if(isprime(2^prime(i)-prime(i)^2),print1(i,",")))

Extensions

3 more terms from Giovanni Resta, Apr 03 2006
One more term from Farideh Firoozbakht, Dec 08 2006

A099481 Numbers k such that 2^k - k^2 is a semiprime.

Original entry on oeis.org

11, 13, 15, 21, 23, 37, 39, 41, 43, 47, 49, 55, 67, 75, 103, 105, 133, 147, 153, 161, 163, 177, 201, 209, 221, 239, 249, 263, 311, 335, 355, 397, 413, 421, 437, 447, 583, 617, 775, 807
Offset: 1

Views

Author

Hugo Pfoertner, Oct 18 2004

Keywords

Comments

The smaller prime factor of the 125-digit semiprime 2^413 - 413^2 has 40 digits; for the 127-digit semiprime 2^421 - 421^2 the smaller prime factor has 45 digits. The next term is >= 583. - Hugo Pfoertner, Oct 14 2007
The factorization of the 176-decimal-digit composite 2^583 - 583^2 using SNFS in YAFU took 55000 seconds on 4 cores of an i5-2400 CPU @ 3.10GHz. a(38) >= 617. - Hugo Pfoertner, Jul 23 2019
a(41) >= 827. - Hugo Pfoertner, Jul 26 2019

Examples

			a(1) = 11 because 2^11 - 11^2 = 1927 = 41*47.
		

Crossrefs

Cf. A024012 (2^n-n^2), A099482 (semiprimes of the form 2^n-n^2), A072180 (2^n-n^2 is prime), A075896 (primes of the form 2^n-n^2).

Extensions

More terms from Hugo Pfoertner, Oct 14 2007
a(37)-a(40) from Hugo Pfoertner, Jul 26 2019

A239279 Smallest k such that n^k - k^n is prime, or 0 if no such number exists.

Original entry on oeis.org

5, 1, 1, 14, 1, 20, 1, 10, 273, 14, 1, 38, 1, 68, 0
Offset: 2

Views

Author

Derek Orr, Mar 14 2014

Keywords

Comments

It is believed that for all n > 4 and not in A097764, a(n) > 0.
a(n+1) = 1 if and only if n is prime.
If a(n) > 0 then a(n) and n are coprime.
If n is in the sequence A097764, then a(n) = 0 or 1 since n^k-k^n is factorable.
33^2570 - 2570^33 is a probable prime, so a(33) is probably 2570. - Jon E. Schoenfield, Mar 20 2014
Unknown a(n) values checked for k <= 10000 using PFGW. a(97) = 6006 found by Donovan Johnson in 2005. The Lifchitz link shows some large candidates for larger n but a smaller k exists in many of those cases. - Jens Kruse Andersen, Aug 13 2014
Unknown a(n) values checked for k <= 15000 using PFGW.

Examples

			2^1-1^2 = 1 is not prime. 2^2-2^2 = 0 is not prime. 2^3-3^2 = -1 is not prime. 2^4-4^2 = 0 is not prime. 2^5-5^2 = 7 is prime. So a(2) = 5.
		

Crossrefs

Programs

  • PARI
    a(n)=k=1; if(n>4, forprime(p=1, 100, if(ispower(n)&&ispower(n)%p==0&&n%p==0, return(0)); if(n%p==n, break))); k=1; while(!ispseudoprime(n^k-k^n), k++); return(k)
    vector(15, n, a(n+1))
  • Python
    import sympy
    from sympy import isprime
    from sympy import gcd
    def Min(x):
      k = 1
      while k < 5000:
        if gcd(k,x) == 1:
          if isprime(x**k-k**x):
            return k
          else:
            k += 1
        else:
          k += 1
    x = 1
    while x < 100:
      print(Min(x))
      x += 1
    

A243114 Primes of the form 6^x-x^6.

Original entry on oeis.org

5, 162287, 13055867207, 1719070799748422589190392551, 174588755932389037098918153698589675008087, 307180606913594390117978657628360735703373091543821695941623353827100004182413811352186951
Offset: 1

Views

Author

M. F. Hasler, Aug 20 2014

Keywords

Comments

The next term is too large to include.
See A117706 for the corresponding numbers x.
The next term has 113 digits. - Harvey P. Dale, Jan 17 2018

Crossrefs

Programs

  • Mathematica
    Select[Table[6^x-x^6,{x,200}],PrimeQ] (* Harvey P. Dale, Jan 17 2018 *)
  • PARI
    for(x=1,1e5,ispseudoprime(p=6^x-x^6)&&print1(p","))

A350964 a(n) is the largest prime factor of 2^p - p^2 where p is the n-th prime.

Original entry on oeis.org

7, 79, 47, 113, 130783, 523927, 1198297, 240641, 641, 575058377, 1519711993, 65929327, 20105355479017, 9007199254738183, 7633399, 33189241, 21081993227096629777, 951850902549409, 4978773308244222679, 501615233613780359, 9671406556917033397642519, 8251206137, 3818597055399121, 13314319257913, 521211122055087383048446607
Offset: 3

Views

Author

N. J. A. Sloane, Mar 02 2022

Keywords

Comments

All prime factors of 2^p - p^2 are congruent to 1 or 7 (mod 8). (See A001132.) - Robert G. Wilson v, Mar 14 2022

References

  • E.-B. Escott, Note #1642, L'Intermédiaire des Mathématiciens, 8 (1901), page 12.

Crossrefs

Programs

  • Maple
    a:= n-> max(numtheory[factorset]((p-> 2^p-p^2)(ithprime(n)))):
    seq(a(n), n=3..27);  # Alois P. Heinz, Mar 03 2022
  • Mathematica
    a[n_] := FactorInteger[2^(p = Prime[n]) - p^2][[-1, 1]]; Array[a, 25, 3] (* Amiram Eldar, Mar 03 2022 *)
  • PARI
    a(n) = my(p=prime(n)); vecmax(factor(2^p - p^2)[,1]); \\ Michel Marcus, Mar 03 2022

Formula

a(n) = A006530(A098105(n)). - Amiram Eldar, Mar 03 2022

A192515 Number of primes in the range [2^n-n^2, 2^n].

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 9, 10, 11, 15, 15, 16, 16, 18, 19, 20, 21, 23, 23, 31, 24, 34, 28, 27, 35, 32, 41, 38, 46, 45, 38, 44, 36, 49, 51, 43, 61, 33, 48, 58, 42, 62, 67, 59, 63, 70, 57, 63, 73, 68, 85, 74, 75, 73, 77, 86, 85, 74, 94, 89, 83, 89, 94, 93, 97, 102
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 03 2011

Keywords

Examples

			a(0)=0 because [2^0-0^2, 2^0]=[1, 1],
a(1)=1 because 2 in range [2^1-1^2, 2^1]=[1, 2],
a(2)=2 because 2, 3 in range [2^2-2^2, 2^2]=[0, 4],
a(3)=4 because 2, 3, 5, 7 in range [2^3-3^2, 2^3]=[-1, 8],
a(4)=6 because 2, 3, 5, 7, 11, 13 in range [2^4-4^2, 2^4]=[0, 16],
a(5)=8 because 7, 11, 13, 17, 19, 23, 29, 31 in range [2^5-5^2, 2^5]=[7, 32].
		

Crossrefs

Programs

  • Maple
    A192515 := proc(n) a := 0 ; for i from 2^n-n^2 to 2^n do if isprime(i) then a := a+1 ; end if; end do; a ; end proc: # R. J. Mathar, Jul 11 2011
  • Mathematica
    Table[Count[Range[2^n - n^2, 2^n], p_ /; PrimeQ@ p], {n, 0, 65}] (* Michael De Vlieger, Apr 03 2016 *)
  • PARI
    a(n) = primepi(2^n) - primepi(2^n-n^2) + isprime(2^n-n^2); \\ Michel Marcus, Apr 03 2016

Extensions

Corrected and extended by R. J. Mathar, Jul 11 2011

A242929 Primes p such that 2^p - p^2 is prime.

Original entry on oeis.org

5, 7, 17, 19, 53, 83, 227, 461, 2221, 3547, 9029, 119087
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 27 2014

Keywords

Comments

a(12) > 23053. - Robert Israel, Jun 10 2014

Examples

			5 is in this sequence because 5 and 2^5 - 5^2 = 7 are both prime.
		

Crossrefs

Subsequence of A072180.

Programs

  • Magma
    [p: p in PrimeUpTo(2200) | IsPrime(2^p - p^2)];
    
  • Maple
    select(p -> isprime(p) and isprime(2^p - p^2), {2} union {seq(2*i+1,i=1..2000)});# Robert Israel, Jun 10 2014
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[2^# - #^2] &] (* Alonso del Arte, May 27 2014 *)
  • PARI
    isok(p) = isprime(p) && ispseudoprime(2^p - p^2); \\ Daniel Suteu, Jun 25 2022

Formula

a(n) = prime(A117587(n)). - Daniel Suteu, Jun 25 2022

Extensions

a(9) from Alonso del Arte, May 27 2014
a(10) from Alois P. Heinz, May 28 2014
a(11) from Robert Israel, Jun 10 2014
a(12) added by Daniel Suteu, Jun 25 2022
Previous Showing 11-19 of 19 results.