cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A254528 Number of decimal digits in the integer part of e^n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19, 20, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 32, 33, 33
Offset: 0

Views

Author

Robert G. Wilson v, Feb 01 2015

Keywords

Examples

			e^10 = 22026.46579480671..., so a(10) = 5.
		

Crossrefs

Cf. A001113, A072334, A091933, A092426, A092511, A092512, A092513 (see their offsets).

Programs

  • Mathematica
    f[n_] := 1 + Floor@ Log10@ Exp@ n; Array[f, 75, 0]
    Table[Sum[DigitCount[Floor[Exp[1]^k]][[n]], {n, 1, 10}], {k, 0, 150}] (* Benedict W. J. Irwin, Apr 13 2016 *)
    IntegerLength[Floor[E^Range[0,80]]] (* Harvey P. Dale, Aug 28 2017 *)
  • PARI
    a(n) = localprec(n+1); #Str(floor(exp(n))); \\ Michel Marcus, Dec 05 2020

Formula

a(n) = A055642(A000149(n)). - Amiram Eldar, May 25 2024

A278327 Decimal expansion of 1/e - 1/e^2.

Original entry on oeis.org

2, 3, 2, 5, 4, 4, 1, 5, 7, 9, 3, 4, 8, 2, 9, 6, 2, 9, 7, 0, 1, 5, 2, 4, 2, 7, 5, 1, 8, 8, 9, 7, 6, 4, 6, 4, 0, 3, 8, 1, 7, 9, 5, 8, 5, 1, 2, 2, 1, 9, 1, 9, 5, 3, 0, 3, 9, 6, 7, 7, 9, 2, 9, 0, 4, 3, 3, 8, 8, 1, 2, 1, 6, 4, 3, 4, 1, 2, 1, 1, 3, 4, 2, 0, 0, 4, 9, 1, 5, 1, 8, 5, 5, 2, 6, 2, 5, 9, 4, 9, 9, 1, 5, 5, 0
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2016

Keywords

Comments

The probability, as n = 2^k increases without bound, that a randomized skip list with n elements and p = 1/2 has exactly k levels.

Examples

			0.232544157934829629701524275188976464...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/E - 1/E^2, 10, 120][[1]] (* Amiram Eldar, May 27 2023 *)

Formula

Equals 1/A001113 - 1/A072334 = A068985 - A092553.

A367574 Decimal expansion of BesselI(0,2*sqrt(2)).

Original entry on oeis.org

4, 2, 5, 2, 3, 5, 0, 8, 7, 9, 5, 0, 2, 6, 2, 3, 8, 2, 5, 2, 9, 3, 2, 3, 0, 8, 2, 4, 0, 8, 9, 5, 1, 0, 3, 0, 2, 1, 0, 7, 6, 8, 6, 0, 9, 8, 2, 2, 7, 0, 6, 7, 5, 3, 6, 4, 4, 7, 4, 3, 2, 1, 9, 9, 9, 6, 9, 3, 7, 7, 7, 8, 1, 1, 3, 0, 4, 2, 0, 6, 4, 4, 7, 8, 7, 0, 3, 8, 6, 7, 2, 8, 0, 1, 8, 9, 7, 2, 8, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2023

Keywords

Examples

			4.252350879502623825293230824089510302...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[0, 2 Sqrt[2]], 10, 100][[1]]

Formula

Equals Sum_{k>=0} 2^k / k!^2.
Equals Sum_{i>=0} (i+1)/Product_{j=1..i} A000217(j). - Davide Rotondo, Feb 25 2025

A104999 Primes from merging of 3 successive digits in decimal expansion of exp(2).

Original entry on oeis.org

389, 227, 131, 557, 127, 257, 379, 607, 577, 431, 179, 947, 773, 547, 661, 127, 733, 337, 839, 607, 107, 239, 947, 269, 647, 523, 487, 757, 541, 467, 281, 293, 331, 101, 193, 337, 997, 953, 307, 751, 823, 947, 479, 991, 587, 877, 683, 239, 727, 883, 461
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Crossrefs

Programs

  • Mathematica
     Select[FromDigits/@Partition[RealDigits[Exp[2], 10, 500][[1]], 3, 1],#>99&&PrimeQ[#]&] (* Vincenzo Librandi, Apr 26 2013 *)

A105003 Primes from merging of 7 successive digits in decimal expansion of exp(2).

Original entry on oeis.org

7500781, 8031557, 1217947, 2179477, 1794773, 4788661, 7812733, 3913309, 6254141, 9928129, 3188807, 3301019, 3378997, 8997407, 9740729, 7407299, 9600953, 1532081, 2368469, 6846947, 4793029, 4456831, 6831239, 9996461
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Crossrefs

Programs

  • Mathematica
     Select[FromDigits/@Partition[RealDigits[Exp[2], 10, 600][[1]], 7, 1], #>999999&&PrimeQ[#]&] (* Vincenzo Librandi, Apr 26 2013 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Apr 26 2013

A105006 Erroneous version of: Primes from merging of 10 successive digits in decimal expansion of exp(2).

Original entry on oeis.org

1784090467, 1183898827, 1445683123, 1370213483, 1571224183, 1193531621, 2117195173, 1316084201, 1109265013, 1849899449, 1609339583, 1862200777, 1211998849, 1071519781, 1654739179, 2006107949, 2050796009, 1068857957
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Comments

See A225141 for the correct one. What is this sequence? [Bruno Berselli, Apr 30 2013]

Crossrefs

A234604 Floor of the solutions to c = exp(1 + n/c) for n >= 0, using recursion.

Original entry on oeis.org

2, 3, 4, 4, 5, 6, 6, 7, 17, 35, 62, 103, 164, 256, 391, 589, 880, 1303, 1919, 2814, 4112, 5993, 8716, 12655, 18353, 26591, 38499, 55710, 80583, 116523, 168453, 243485, 351889, 508506, 734776, 1061672, 1533938, 2216216
Offset: 0

Views

Author

Richard R. Forberg, Dec 28 2013

Keywords

Comments

For n = 1 to 7 recursion produces convergence to single valued solutions.
For n >= 8 a dual-valued oscillating recursion persists between two stable values. The floor of the upper value for each n is included here. (The lower values of c are under 6 and approach exp(1) = 2.71828 for large n.)
At large n, the ratio of a(n)/a(n-1) approaches exp(1/exp(1)) = 1.444667861009 with more digits given by A073229.
At n = 0, c = exp(1).
At n = 1, c = 3.5911214766686 = A141251.
At n = 2, c = 4.3191365662914
At n = 3, c = 4.9706257595442
At n = 4, c = 5.5723925978776
At n = 5, c = 6.1383336446072
At n = 6, c = 6.6767832796664
At n = 7, c = 7.1932188286406
The convergence becomes "dual-valued" at n > exp(2) = 7.3890560989 = A072334.
At values of n = 7 and 8 the convergence is noticeably slower than at either larger or smaller values of n.
The recursion at n = exp(2) is only "quasi-stable" where c reluctantly approaches exp(2) = exp(1 + exp(2)/exp(2)) from any starting value, but never reaches it, and is not quite able to hold it if given the solution, due to machine rounding errors.

Crossrefs

Formula

a(n) = floor(c) for the solutions to c = exp(1 + n/c) at n = 0 to 7, and the floor of the stable upper values of c for n >= 8.
Conjecture: a(n) = floor(e^(-e^(t^2/e^t - t)*t^2 + t + 1)) for all n > 13. - Jon E. Schoenfield, Jan 11 2014

Extensions

Corrected and edited by Jon E. Schoenfield, Jan 11 2014

A346205 Decimal expansion of solution to LambertW(-x) - LambertW(-1,-x) = 2.

Original entry on oeis.org

2, 2, 8, 8, 9, 8, 9, 4, 8, 1, 9, 6, 1, 7, 8, 6, 4, 1, 2, 3, 6, 6, 3, 6, 1, 2, 5, 3, 7, 2, 2, 0, 5, 5, 3, 5, 6, 3, 4, 2, 6, 2, 8, 2, 7, 1, 8, 1, 4, 6, 2, 6, 2, 3, 6, 6, 7, 6, 7, 7, 7, 6, 6, 1, 4, 4, 4, 1, 3, 2, 0, 3, 0, 2, 2, 3, 1, 9, 6, 9, 7, 1, 3, 6, 7, 8, 3, 1, 5, 3, 2, 3, 7, 3, 9, 7, 7, 1, 5, 7, 3, 3, 6, 3, 1, 3, 4, 6, 6, 6
Offset: 0

Views

Author

Gleb Koloskov, Jul 10 2021

Keywords

Examples

			0.2288989481961786412366361253722...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(135)); 2/(Exp(2)-1)*Exp(2/(1-Exp(2))); // G. C. Greubel, Jun 11 2024
    
  • Mathematica
    x/.FindRoot[LambertW[-x]-LambertW[-1,-x]==2, {x, 0.1, 0.3}, WorkingPrecision -> 110]
    RealDigits[2/(E^2-1)*Exp[2/(1-E^2)], 10, 135][[1]] (* G. C. Greubel, Jun 11 2024 *)
  • PARI
    exp(-cotanh(1))/sinh(1)
    
  • SageMath
    numerical_approx(2/(e^2-1)*exp(2/(1-e^2)), digits=135) # G. C. Greubel, Jun 11 2024

Formula

Equals exp(-coth(1))/sinh(1) = exp(-A073747)/A073742.
Equals (coth(1)-1)*exp(1-coth(1)) = (A073747-1)*exp(1-A073747).
Equals (coth(1)+1)/exp(1+coth(1)) = (A073747+1)/exp(1+A073747).
Equals 2/(e^2-1)*exp(2/(1-e^2)) = 2/(A072334^2-1)*exp(2/(1-A072334^2)).

A353246 Integer part of e[n]e, where [n] indicates hyper-n and e = 2.718281828... (using H. Kneser's proposal for n > 3).

Original entry on oeis.org

4, 5, 7, 15, 2075
Offset: 0

Views

Author

Marco Ripà, Apr 08 2022

Keywords

Comments

The common hyperoperation sequence is defined as follows: hyper-0 = zeration, hyper-1 = addition, hyper-2 = multiplication, hyper-3 = exponentiation, hyper-4 = tetration, and so on...
Thus e[0]e = e + 2, e[1]e = 2*e, e[2]e = e^2, e[3]e = e^e, and so on.
The fifth term of the twin sequence of the present one, floor(Pi[4]Pi), is much larger than 2075 and it is harder to calculate, while the integer part of e[4]Pi is 37149801960 (17.9 million times bigger than a(4)).

Examples

			For n = 3, a(3) = floor(e[3]e) = floor(e^e) = 15.
		

Crossrefs

Formula

a(n) = floor(e[n]e).

A096438 Decimal expansion of (Pi^2 - e^2)^(1/3).

Original entry on oeis.org

1, 3, 5, 3, 6, 7, 9, 6, 3, 7, 2, 0, 7, 3, 1, 6, 9, 5, 1, 2, 1, 0, 6, 5, 6, 9, 3, 6, 6, 8, 9, 1, 3, 0, 2, 7, 7, 6, 9, 0, 1, 3, 9, 1, 3, 2, 3, 1, 0, 4, 1, 6, 3, 6, 7, 0, 6, 0, 9, 0, 4, 0, 2, 8, 3, 4, 1, 6, 1, 0, 4, 7, 5, 0, 7, 9, 2, 6, 6, 4, 3, 8, 4, 9, 1, 4, 4, 7, 0, 4, 5, 4, 5, 1, 5, 3, 5, 7, 5, 1, 2, 0, 5, 0, 4
Offset: 1

Views

Author

Mohammad K. Azarian, Aug 10 2004

Keywords

Examples

			1.3536796372073169512106569366...
		

Crossrefs

Previous Showing 21-30 of 36 results. Next