cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 59 results. Next

A242909 Decimal expansion of exp(-gamma/2).

Original entry on oeis.org

7, 4, 9, 3, 0, 6, 0, 0, 1, 2, 8, 8, 4, 4, 9, 0, 2, 3, 6, 0, 5, 8, 7, 1, 5, 1, 8, 6, 8, 5, 2, 6, 1, 5, 1, 1, 8, 3, 3, 3, 0, 1, 2, 2, 2, 0, 1, 6, 7, 2, 4, 9, 3, 0, 8, 9, 4, 3, 4, 1, 3, 8, 6, 5, 8, 6, 2, 9, 2, 2, 9, 8, 6, 4, 3, 8, 7, 3, 9, 7, 2, 6, 6, 5, 0, 2, 5, 6, 0, 2, 6, 3, 2, 8, 8, 3, 0, 7, 5, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, May 26 2014

Keywords

Examples

			0.7493060012884490236058715186852615118333...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 3.10 Kneser-Mahler polynomial constants p. 234.

Crossrefs

Programs

  • Magma
    Exp(-EulerGamma(100)/2); // Stefano Spezia, Dec 10 2024
  • Mathematica
    RealDigits[Exp[-EulerGamma/2], 10, 101] // First

Formula

Lim_(m->oo) M(z_1, z_2, ..., z_m)/sqrt(m), where M is Mahler's measure for multivariate polynomials.

A244274 Decimal expansion of e*gamma, the product of Euler number and Euler-Mascheroni constant.

Original entry on oeis.org

1, 5, 6, 9, 0, 3, 4, 8, 5, 3, 0, 0, 3, 7, 4, 2, 2, 8, 5, 0, 7, 9, 9, 0, 7, 8, 4, 9, 1, 2, 3, 1, 5, 1, 1, 9, 2, 3, 0, 7, 2, 4, 2, 9, 0, 7, 5, 8, 8, 8, 9, 4, 9, 0, 8, 6, 5, 6, 6, 5, 4, 2, 6, 1, 4, 1, 2, 6, 1, 5, 2, 0, 6, 6, 8, 2, 9, 2, 4, 3, 0, 0, 5, 0, 6, 4, 9, 5, 5, 3, 8, 0, 4, 7, 9, 4, 3, 9, 9, 6, 9, 2, 3, 4, 1
Offset: 1

Views

Author

Stanislav Sykora, Jun 28 2014

Keywords

Examples

			1.569034853003742285079907849123151192307242907588894908656654...
		

Crossrefs

Programs

  • Magma
    R:= RealField(100); Exp(1)*EulerGamma(R); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[E*EulerGamma,10,120][[1]] (* Harvey P. Dale, Jan 01 2015 *)
  • PARI
    exp(1)*Euler
    

A246499 Decimal expansion of zeta(2)/exp(gamma), gamma being the Euler-Mascheroni constant.

Original entry on oeis.org

9, 2, 3, 5, 6, 3, 8, 3, 1, 6, 7, 4, 1, 8, 1, 3, 8, 2, 3, 2, 3, 5, 0, 9, 9, 5, 3, 9, 8, 7, 7, 0, 3, 9, 1, 6, 8, 4, 6, 9, 3, 1, 9, 6, 3, 2, 6, 1, 1, 1, 6, 3, 2, 5, 2, 0, 3, 5, 9, 5, 8, 3, 1, 6, 0, 2, 9, 7, 2, 3, 4, 3, 0, 5, 8, 2, 6, 0, 4, 8, 0, 9, 0, 9, 1, 2, 4, 9, 7, 7, 5, 0, 5, 2, 6, 5, 6, 2, 9, 8, 7, 9, 1, 5, 2
Offset: 0

Views

Author

Stanislav Sykora, Nov 14 2014

Keywords

Comments

It follows from Mertens theorem that this constant is the limit for large m of log(prime(m))*Product_{k=1..m} 1/(1 + 1/prime(k)).

Examples

			0.9235638316741813823235099539877039168469319632611163252035958316...
		

Crossrefs

Programs

  • Magma
    R:=RealField(100); Pi(R)^2/(6*Exp(EulerGamma(R))); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[Zeta[2]/E^EulerGamma, 10, 100][[1]] (* Alonso del Arte, Nov 14 2014 *)
  • PARI
    Pi^2/6/exp(Euler)
    

Formula

Equals Pi^2/(6*exp(gamma)).
Equals lim_{m->infinity} log(prime(m))*Product_{k=1..m} 1/(1 + 1/prime(k)).
Equals A013661/A073004. - Michel Marcus, Nov 18 2014

A061091 Number of k with 1 <= k <= n relatively prime to phi(k).

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 23, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28
Offset: 1

Views

Author

Frank Ellermann, May 29 2001

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.

Crossrefs

Partial sums of A297086.
Cf. A000010 (phi), A001620 (gamma), A003277, A073004, A080130.

Programs

  • Mathematica
    s[n_] := Boole[CoprimeQ[n, EulerPhi[n]]]; Accumulate[Array[s, 100]]  (* Amiram Eldar, Dec 10 2024 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, eulerphi(k)) == 1) \\ Charles R Greathouse IV, Jan 29 2013 (corrected by Iain Fox, Dec 25 2017)
    
  • PARI
    list(lim) = {my(s = 0); for(k = 1, lim, s += gcd(k, eulerphi(k)) == 1; print1(s, ", "));} \\ Amiram Eldar, Dec 10 2024

Formula

Limit_{n->oo} a(n) * log(log(log(n))) / n = 1/exp(gamma).
a(n) = Sum_{k=1..n} gcd(k, phi(k)) = 1.
a(1) = 1; a(n) = a(n-1) + A297086(n). - Iain Fox, Dec 25 2017

A202412 Decimal expansion of Gamma(gamma).

Original entry on oeis.org

1, 5, 4, 3, 8, 8, 1, 7, 4, 1, 8, 1, 5, 6, 6, 1, 6, 9, 8, 7, 2, 0, 1, 1, 9, 3, 8, 8, 4, 1, 3, 1, 7, 0, 1, 9, 3, 5, 5, 2, 1, 8, 1, 7, 3, 3, 2, 3, 6, 3, 1, 4, 0, 1, 5, 8, 1, 5, 6, 1, 3, 8, 0, 6, 7, 9, 0, 9, 2, 6, 1, 3, 1, 7, 0, 1, 2, 0, 2, 3, 7, 7, 1, 9, 5, 5, 5, 4, 9, 4, 7, 5, 9, 3, 2, 1
Offset: 1

Views

Author

Peter Luschny, Jan 12 2012

Keywords

Comments

Gamma is the Euler Gamma function, gamma is the Euler-Mascheroni constant A001620.

Examples

			1.54388174181566169872011938841317019355218...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Gamma(EulerGamma(R)); // G. C. Greubel, Sep 03 2018
  • Mathematica
    RealDigits[Gamma[EulerGamma], 10, 100][[1]]
  • PARI
    default(realprecision, 100); gamma(Euler) \\ G. C. Greubel, Sep 03 2018
    

Formula

gamma*Gamma(gamma) = exp(-gamma^2)*Prod_{n=1..oo} exp(gamma/n)/(1+gamma/n). -- Karl Weierstrass, 1854

A215000 a(n) = floor(exp(1 + 1/2 + 1/3 + ... + 1/n)).

Original entry on oeis.org

2, 4, 6, 8, 9, 11, 13, 15, 16, 18, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 54, 56, 57, 59, 61, 63, 65, 66, 68, 70, 72, 73, 75, 77, 79, 81, 82, 84, 86, 88, 89, 91, 93, 95, 97, 98, 100, 102, 104, 105, 107, 109, 111, 113, 114
Offset: 1

Views

Author

Clark Kimberling, Aug 18 2012

Keywords

Comments

a(n) is the greatest integer k for which log k < 1 + 1/2 + ... + 1/n.
a(n) is asymptotically equals to n*e^(gamma) for large values of n where 'gamma' is the Euler-Mascheroni constant (Cf. A001620). - Balarka Sen, Aug 19 2012

Examples

			log 2 < 1 < log 3, so a(1) = 2;
log 4 < 1 + 1 + 1/2 < log 5, so a(2) = 4;
log 6 < 1 + 1/2 + 1/3 < log 7, so a(3) = 6.
		

Crossrefs

Programs

  • Magma
    [Floor(Exp((&+[1/k :k in [1..n]]))): n in [1..30]]; // G. C. Greubel, Feb 01 2018
  • Mathematica
    f[n_] := Sum[1/h, {h, n}]; Table[Floor[E^f[n]], {n, 100}]
    Table[Floor[Exp[HarmonicNumber[n]]], {n, 1, 100}] (* G. C. Greubel, Aug 30 2018 *)
  • PARI
    a(n) = floor(exp(sum(X=1,n,1/X))) \\ Balarka Sen, Aug 19 2012
    

A244499 Decimal expansion of e/gamma, the ratio of Euler number and the Euler-Mascheroni constant.

Original entry on oeis.org

4, 7, 0, 9, 3, 0, 0, 1, 6, 9, 3, 2, 7, 1, 0, 3, 3, 3, 0, 7, 4, 4, 1, 4, 3, 2, 1, 7, 7, 5, 4, 7, 0, 0, 4, 6, 3, 5, 1, 6, 6, 1, 6, 7, 8, 3, 2, 9, 0, 6, 4, 7, 1, 9, 6, 0, 9, 7, 8, 7, 0, 3, 8, 7, 1, 4, 8, 8, 1, 8, 3, 6, 1, 2, 4, 9, 5, 8, 1, 1, 6, 3, 1, 3, 8, 8, 5, 4, 8, 8, 1, 9, 2, 3, 6, 0, 7, 2, 0, 3, 0, 1, 7, 5, 7
Offset: 1

Views

Author

Stanislav Sykora, Jun 29 2014

Keywords

Examples

			4.709300169327103330744143217754700463516616783290647196...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.10, page 2.

Crossrefs

Programs

  • Magma
    R:= RealField(100); Exp(1)/EulerGamma(R); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[E/EulerGamma, 10, 100][[1]] (* G. C. Greubel, Aug 30 2018 *)
  • PARI
    exp(1)/Euler
    

Formula

Equals lim_{n->oo} (g(n)^gamma/gamma^g(n))^(2*n), where g(n) = H(n) - log(n) and H(n) = A001008(n)/A002805(n) is the n-th harmonic number (Furdui, 2007 and 2013). - Amiram Eldar, Mar 26 2022

A335004 Decimal expansion of 6*exp(gamma)/Pi^2.

Original entry on oeis.org

1, 0, 8, 2, 7, 6, 2, 1, 9, 3, 2, 6, 0, 9, 2, 4, 5, 8, 0, 1, 2, 2, 1, 8, 8, 0, 3, 8, 1, 9, 0, 9, 2, 6, 5, 7, 0, 1, 8, 4, 3, 0, 6, 6, 5, 5, 5, 8, 3, 6, 0, 0, 1, 4, 4, 1, 0, 2, 0, 3, 1, 9, 7, 4, 3, 5, 5, 1, 2, 8, 6, 1, 9, 2, 9, 8, 2, 9, 5, 0, 4, 3, 4, 2, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, May 19 2020

Keywords

Examples

			1.0827621932609245801221880381909265701843066555836...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.1, p. 31.
  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, page 100.

Crossrefs

Cf. A001620 (gamma), A013661 (Pi^2/6), A051377 (esigma), A059956 (6/Pi^2), A073004 (exp(gamma)), A246499 (Pi^2/(6*exp(gamma))).

Programs

  • Mathematica
    RealDigits[6*Exp[EulerGamma]/Pi^2, 10, 100][[1]]
  • PARI
    6*exp(Euler)/Pi^2 \\ Michel Marcus, May 19 2020

Formula

Equals limsup_{k->oo} esigma(k)/(k*log(log(k))), where esigma(k) is the sum of exponential divisors of k (A051377).
Equals A073004 * A059956 = A073004 / A013661 = 1 / A246499.
Equals lim_{k->oo} (1/log(k)) * Product_{p prime <= k} (1 + 1/p). - Amiram Eldar, Jul 09 2020

A342455 The fifth powers of primorials: a(n) = A002110(n)^5.

Original entry on oeis.org

1, 32, 7776, 24300000, 408410100000, 65774855015100000, 24421743243121524300000, 34675383095948798128025100000, 85859681408495723096004822084900000, 552622359415801587878908964592391520700000, 11334919554709059323420895730190266747414284300000, 324509123504618420438174660414872405442002404781629300000
Offset: 0

Views

Author

Antti Karttunen, Mar 12 2021

Keywords

Comments

The ratio G(n) = sigma(n) / (exp(gamma)*n*log(log(n))), where gamma is the Euler-Mascheroni constant (A001620), as applied to these numbers from a(1)=32 onward, develops as:
1: 0.8893323133
2: 0.7551575418
3: 0.7303870617
4: 0.7347890824
5: 0.7263701246
6: 0.7298051649
7: 0.7304358358
8: 0.7354921494
9: 0.7389343933
10: 0.7391912616
11: 0.7416291350
12: 0.7424159544
...
Notably, after its minimum at term a(5) = 65774855015100000, it starts increasing again, albeit rather slowly. At n=10000 the ratio is 0.8632750..., and at n=40000, it is 0.87545260... Question: Does this trend continue indefinitely? In contrast, for primorials, A002110, the ratio appears to be monotonically decreasing, see comments in A342000.

Crossrefs

Diagonal in A079474. After the initial term, also the leftmost branch in that subtree of A329886 whose root is 32.

Programs

  • Mathematica
    FoldList[Times, 1, Prime@ Range[11]]^5 (* Michael De Vlieger, Mar 14 2021 *)
  • PARI
    A342455(n) = prod(i=1,n,prime(i))^5;
    
  • Python
    from sympy.ntheory.generate import primorial
    def A342455(n): return primorial(n)**5 if n >= 1 else 1 # Chai Wah Wu, Mar 13 2021

Formula

a(n) = A000584(A002110(n)) = A002110(n)^5.

A346153 a(n) = A346152(n!).

Original entry on oeis.org

1, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 7, 5, 5, 5, 7, 5, 7, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2021

Keywords

Comments

Erdős and Selfridge (1982) proved that if f(n) = primepi(a(n)) (or, equivalently, a(n) = prime(f(n))), then |f(n+1) - f(n)| <= 1, and that for infinitely many values of n, f(n+1) = f(n) - 1.

Crossrefs

Programs

  • Mathematica
    f[1] = 1; f[n_] := Module[{fct = FactorInteger[n], prods, ind}, prods = Rest @ FoldList[Times, 1, Power @@@ fct]; ind = FirstPosition[prods^2, ?(# > n &)][[1]]; fct[[ind, 1]]]; a[n] := f[n!]; Array[a, 100]

Formula

a(n) = A346152(A000142(n)).
Lim_{n->oo} a(n)/sqrt(n) = exp(gamma - 1/2), where gamma is Euler's constant (A001620) (Erdős and Selfridge, 1982).
Previous Showing 21-30 of 59 results. Next