cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 55 results. Next

A243308 Decimal expansion of h_3, a constant related to certain evaluations of the gamma function from elliptic integrals.

Original entry on oeis.org

1, 0, 1, 7, 4, 0, 8, 7, 9, 7, 5, 9, 5, 9, 5, 6, 0, 0, 8, 6, 6, 9, 5, 3, 8, 7, 5, 3, 3, 5, 0, 0, 6, 3, 4, 2, 5, 9, 9, 5, 2, 5, 6, 9, 1, 8, 5, 4, 5, 4, 1, 1, 8, 9, 9, 9, 1, 5, 0, 5, 4, 2, 3, 7, 5, 3, 5, 2, 1, 2, 4, 3, 1, 8, 0, 6, 2, 5, 0, 1, 6, 3, 9, 4, 4, 2, 3, 6, 6, 6, 5, 0, 9, 7, 6, 1, 2, 0, 0, 7, 9, 2, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 03 2014

Keywords

Examples

			1.0174087975959560086695387533500634259952569...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5.4 Gamma function, p. 34.

Crossrefs

Programs

  • Maple
    Re(evalf(4*EllipticK(sqrt((4*sqrt(3)-7)))/(sqrt(2+sqrt(3))*Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[4*EllipticK[4*Sqrt[3]-7]/(Sqrt[2+Sqrt[3]]*Pi), 10, 103] // First
    RealDigits[1/ArithmeticGeometricMean[1, Sqrt[2 + Sqrt[3]]/2], 10, 103][[1]] (* Jan Mangaldan, Jan 06 2017 *)
    RealDigits[2 EllipticK[(2 - Sqrt[3])/4]/Pi, 10, 103][[1]] (* Jan Mangaldan, Jan 06 2017 *)

Formula

4*K(4*sqrt(3)-7)/(sqrt(2+sqrt(3))*Pi), where K is the complete elliptic integral of the first kind.
3^(1/4)*GAMMA(1/3)^3/(2*2^(1/3)*Pi^2), where GAMMA is the Euler Gamma function.
GAMMA(1/6)^(3/2)/(2^(5/6)*sqrt(3)*Pi^(5/4)).

A322508 Factorial expansion of Gamma(1/3) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

2, 1, 1, 0, 1, 2, 5, 6, 7, 2, 1, 8, 5, 7, 9, 12, 13, 10, 10, 13, 17, 18, 5, 1, 6, 3, 26, 13, 20, 29, 8, 31, 27, 19, 21, 27, 5, 14, 12, 3, 9, 37, 34, 40, 14, 29, 35, 12, 27, 4, 36, 22, 24, 11, 31, 37, 12, 5, 47, 14, 22, 18, 51, 20, 51, 4, 15, 54, 61, 26, 55, 2, 6, 73, 7, 17, 66, 54, 27
Offset: 1

Views

Author

G. C. Greubel, Dec 12 2018

Keywords

Examples

			Gamma(1/3) = 2 + 1/2! + 1/3! + 0/4! + 1/5! + 2/6! + 5/7! + 6/8! + ...
		

Crossrefs

Cf. A073005 (decimal expansion), A030651 (continued fraction).
Cf. A068463 (Gamma(3/4)), A068464 (Gamma(1/4)), A322509 (Gamma(2/3)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Gamma(1/3))] cat [Floor(Factorial(n)*Gamma(1/3)) - n*Floor(Factorial((n-1))*Gamma(1/3)) : n in [2..80]];
    
  • Mathematica
    With[{b = Gamma[1/3]}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n-1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = gamma(1/3); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    b=gamma(1/3);
    def a(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [a(n) for n in (1..80)]

A357318 Decimal expansion of 1/(2*L), where L is the conjectured Landau's constant A081760.

Original entry on oeis.org

9, 2, 0, 3, 7, 1, 3, 7, 3, 3, 1, 7, 9, 4, 2, 4, 9, 7, 6, 5, 5, 5, 1, 8, 5, 6, 4, 5, 4, 3, 1, 7, 2, 9, 9, 4, 7, 2, 6, 2, 4, 5, 7, 9, 1, 9, 4, 9, 8, 9, 4, 3, 3, 8, 3, 4, 3, 3, 0, 0, 1, 9, 9, 7, 7, 3, 1, 0, 1, 8, 0, 8, 0, 8, 0, 5, 6, 8, 5, 6, 3, 9, 3, 6, 3, 3, 8, 5
Offset: 0

Views

Author

Stefano Spezia, Sep 23 2022

Keywords

Examples

			0.9203713733179424976555185645431729947262...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[Gamma[1/6]/(2Gamma[1/3]Gamma[5/6]),88]]]
  • PARI
    1/(2*gamma(1/3)*gamma(5/6)/gamma(1/6)) \\ Michel Marcus, Sep 24 2022

Formula

Equals 1/(2*A081760) = A175379/(2*A073005*A203145).
Equals Sum_{k,m in Z^2} exp(-Pi*(2/sqrt(3))*(k^2+k*m+m^2))*exp(2*Pi*i*(k/3-m/3)).
Equals Sum_{k>=0} (binomial(-1/3,2*k)^2 - binomial(-1/3,2*k+1)^2). - Gerry Martens, Jul 24 2023
Equals 3*Gamma(1/3)^3 / (2^(8/3) * Pi^2). - Vaclav Kotesovec, Jul 27 2023

A371983 Decimal expansion of Gamma(1/30).

Original entry on oeis.org

2, 9, 4, 5, 4, 7, 7, 9, 7, 4, 5, 6, 9, 9, 6, 9, 4, 0, 1, 9, 6, 9, 6, 2, 0, 8, 2, 8, 8, 6, 3, 8, 3, 4, 5, 7, 3, 4, 7, 0, 1, 8, 7, 3, 6, 0, 5, 5, 7, 2, 9, 7, 1, 1, 0, 4, 6, 5, 6, 5, 4, 1, 5, 5, 6, 7, 4, 9, 8, 8, 0, 5, 4, 5, 9, 9, 0, 5, 0, 1, 2, 0, 8, 2, 1, 9, 5, 7, 9, 4, 8, 5, 0, 9, 6, 5, 2, 1, 2, 9, 3, 8, 7, 6, 7
Offset: 2

Views

Author

Vaclav Kotesovec, Apr 15 2024

Keywords

Examples

			29.4547797456996940196962082886383457347018736055729711046565415567498...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/30), 130);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    RealDigits[Gamma[1/30], 10, 120][[1]]
    RealDigits[2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma[1/5] * Gamma[1/3] / ((10 + Sqrt[5] - Sqrt[75 + 30*Sqrt[5]])^(1/4) * Sqrt[Pi]), 10, 120][[1]]

Formula

Equals 3^(9/20) * sqrt(5 + sqrt(5)) * sqrt(sqrt(15) + sqrt(5 + 2*sqrt(5))) * Gamma(1/3) * Gamma(1/5) / (sqrt(Pi) * 2^(16/15) * 5^(1/6)).
Equals 2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma(1/5) * Gamma(1/3) / ((10 + sqrt(5) - sqrt(75 + 30*sqrt(5)))^(1/4) * sqrt(Pi)).
Equals 8*Pi^2 / (Gamma(17/30) * Gamma(19/30) * Gamma(23/30)).
Equals Gamma(7/30) * Gamma(11/30) * Gamma(13/30) / (2*Pi*A019815).

A377008 Decimal expansion of Sum_{k>=1} (zeta(2*k)/k)*(2/3)^(2*k).

Original entry on oeis.org

8, 8, 3, 1, 0, 5, 8, 1, 3, 9, 6, 7, 1, 2, 6, 2, 5, 5, 8, 8, 5, 0, 2, 3, 7, 3, 8, 8, 8, 5, 6, 2, 3, 2, 9, 0, 8, 2, 7, 0, 5, 9, 2, 4, 4, 9, 0, 1, 6, 9, 7, 9, 0, 2, 1, 5, 2, 9, 4, 1, 5, 9, 0, 0, 0, 2, 6, 8, 3, 5, 7, 3, 9, 9, 6, 3, 0, 2, 0, 6, 0, 6, 8, 4, 9, 2, 6, 2, 9, 2, 0, 4, 7, 7, 2, 8, 9, 4, 9, 6, 0, 4, 0, 5, 7
Offset: 0

Views

Author

Amiram Eldar, Oct 12 2024

Keywords

Examples

			0.88310581396712625588502373888562329082705924490169...
		

References

  • H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights, 2011, p. 272, eq. (29).

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[4*Pi/(3*Sqrt[3])], 10, 120][[1]]
    (* or *)
    RealDigits[Log[Gamma[1/3]*Gamma[5/3]], 10, 120][[1]]
  • PARI
    log(4*Pi/(3*sqrt(3)))
    
  • PARI
    log(gamma(1/3)*gamma(5/3))

Formula

Equals log(4*Pi/(3*sqrt(3))) = log(A275486).
Equals log(Gamma(1/3)*Gamma(5/3)).

A059188 Engel expansion of Gamma(1/3) = 2.6789385....

Original entry on oeis.org

1, 1, 2, 3, 14, 33, 57, 236, 6280, 7170, 172302, 24568434, 32871132, 43231756, 60680523, 83128444, 720494727, 803406064, 1804216488, 6655647717, 9106036988, 14962799365, 37839117297, 121819278396, 262108609568
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

A113273 Decimal expansion of Gamma(1/3)^3/Pi^2.

Original entry on oeis.org

1, 9, 4, 7, 9, 9, 7, 9, 8, 1, 6, 0, 8, 4, 2, 4, 4, 7, 7, 5, 4, 5, 1, 6, 4, 1, 5, 7, 1, 2, 8, 0, 7, 9, 5, 9, 6, 0, 5, 1, 9, 0, 8, 4, 7, 4, 4, 0, 9, 9, 4, 9, 0, 5, 0, 9, 4, 1, 0, 3, 3, 9, 1, 2, 5, 8, 8, 6, 9, 5, 1, 4, 1, 1, 8, 0, 9, 7, 5, 2, 5, 4, 3, 6, 8, 7, 1, 5, 0, 2, 0, 2, 5, 6, 8, 6, 6, 2, 7, 5, 0, 9, 9, 6, 3
Offset: 1

Views

Author

Benoit Cloitre, Jan 07 2006

Keywords

Comments

Known to be transcendental.

Examples

			1.9479979816084244775451641...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Gamma[1/3]^3/Pi^2, 10, 120][[1]] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    gamma(1/3)^3/Pi^2

Extensions

Offset corrected by Sean A. Irvine, May 24 2025

A242010 Decimal expansion of sum_{k>=0} (log(3k+1)/(3k+1)-log(3k+2)/(3k+2)).

Original entry on oeis.org

2, 2, 2, 6, 6, 2, 9, 8, 6, 9, 6, 8, 6, 0, 1, 5, 0, 9, 4, 8, 6, 6, 6, 0, 2, 6, 2, 7, 6, 4, 7, 4, 4, 3, 6, 1, 8, 8, 6, 5, 7, 1, 6, 1, 6, 0, 5, 7, 1, 5, 2, 4, 7, 8, 5, 1, 2, 9, 0, 0, 2, 6, 0, 0, 5, 3, 0, 7, 8, 9, 7, 6, 5, 9, 7, 2, 2, 0, 2, 4, 7, 4, 8, 2, 1, 8, 3, 4, 0, 4, 3, 2, 6, 7, 8, 0, 5, 4, 0, 8, 3, 1, 8, 2
Offset: 0

Views

Author

Jean-François Alcover, Aug 11 2014

Keywords

Examples

			-0.22266298696860150948666026276474436188657161605715247851290026...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi/Sqrt[3])*(Log[Gamma[1/3]/Gamma[2/3]] - (1/3)*(EulerGamma + Log[2*Pi])), 10, 104] // First

Formula

(Pi/sqrt(3))*(log(Gamma(1/3)/Gamma(2/3)) - (1/3)*(gamma + log(2*Pi))), where gamma is Euler's constant and Gamma(x) is the Euler Gamma function.

A255902 Decimal expansion of the limit as n tends to infinity of n*s_n, where the s_n are the hexagonal circle-packing rigidity constants.

Original entry on oeis.org

4, 4, 5, 1, 6, 5, 0, 6, 9, 8, 0, 8, 9, 2, 2, 1, 5, 3, 8, 2, 4, 7, 9, 9, 8, 7, 8, 2, 7, 4, 0, 1, 2, 5, 5, 0, 9, 9, 6, 9, 3, 8, 7, 5, 0, 3, 9, 7, 4, 5, 7, 6, 8, 7, 3, 6, 3, 9, 6, 8, 6, 5, 2, 9, 9, 1, 9, 2, 4, 1, 3, 1, 8, 8, 3, 6, 0, 8, 6, 6, 4, 1, 2, 7, 5, 3, 0, 2, 3, 1, 7, 7, 8, 3, 7, 0, 0, 1, 3, 2, 9, 2
Offset: 1

Views

Author

Jean-François Alcover, Mar 10 2015

Keywords

Examples

			4.4516506980892215382479987827401255099693875...
		

Crossrefs

Cf. A073005 (gamma(1/3)), A073006 (gamma(2/3)).

Programs

  • Mathematica
    RealDigits[(2^(4/3)/3)*Gamma[1/3]^2/Gamma[2/3], 10, 102] // First

Formula

(2^(4/3)/3)*gamma(1/3)^2/gamma(2/3).
Equals 4/R, where R = 2^(2/3)*gamma(2/3)/(gamma(1/3)*gamma(4/3)) is the conformal radius in a mapping from the unit disk to the unit side hexagon satisfying certain conditions.

A273842 Decimal expansion of the double integral int_{0..inf} int_{0..inf} 1/sqrt((1+x^2)(1+y^2)(1+(x+y)^2)) dx dy.

Original entry on oeis.org

2, 9, 4, 9, 1, 7, 1, 9, 8, 4, 7, 4, 2, 3, 8, 4, 9, 6, 0, 7, 0, 5, 7, 0, 4, 7, 9, 1, 2, 0, 9, 1, 7, 4, 7, 9, 1, 8, 4, 3, 6, 7, 6, 5, 7, 3, 1, 0, 6, 1, 1, 6, 7, 4, 0, 8, 9, 1, 4, 7, 5, 5, 4, 0, 4, 5, 1, 9, 8, 4, 4, 2, 4, 8, 7, 4, 5, 5, 2, 8, 6, 2, 5, 1, 3, 1, 2, 1, 1, 0, 1, 1, 1, 9, 7, 2, 8, 4, 1, 5, 9, 5, 4
Offset: 1

Views

Author

Jean-François Alcover, Jun 01 2016

Keywords

Examples

			2.94917198474238496070570479120917479184367657310611674089147554...
		

Crossrefs

Cf. A073005.

Programs

  • Mathematica
    RealDigits[ Gamma[1/3]^6/(8*2^(2/3)*Pi^2) , 10, 103][[1]]
  • PARI
    gamma(1/3)^6/(8*2^(2/3)*Pi^2) \\ Michel Marcus, Jun 01 2016

Formula

Gamma(1/3)^6/(8*2^(2/3)*Pi^2).
Previous Showing 41-50 of 55 results. Next