A075226
Largest prime in the numerator of the 2^n sums generated from the set 1, 1/2, 1/3,..., 1/n.
Original entry on oeis.org
3, 11, 19, 137, 137, 1019, 2143, 7129, 7129, 78167, 81401, 1085933, 1111673, 1165727, 2364487, 41325407, 41325407, 796326437, 809074601, 812400209, 822981689, 19174119571, 19652175721, 99554817251, 100483070801
Offset: 2
a(3) =11 because 11 is largest prime numerator in the three sums that yield primes: 1+1/2 = 3/2, 1/2+1/3 = 5/6 and 1+1/2+1/3 = 11/6.
-
import Data.Ratio (numerator)
a075226 n = a075226_list !! (n-1)
a075226_list = f 2 [recip 1] where
f x hs = (maximum $ filter ((== 1) . a010051') (map numerator hs')) :
f (x + 1) hs' where hs' = hs ++ map (+ recip x) hs
-- Reinhard Zumkeller, May 28 2013
-
Needs["DiscreteMath`Combinatorica`"]; maxN=20; For[t={}; lst={}; mx=0; i=0; n=2, n<=maxN, n++, While[i<2^n-1, i++; s=NthSubset[i, Range[n]]; k=Numerator[Plus@@(1/s)]; If[PrimeQ[k], If[k>mx, t=s]; mx=Max[mx, k]]]; Print[n, " ", t]; AppendTo[lst, mx]]; lst
Table[Max[Select[Numerator[Total/@Subsets[1/Range[n],{2,2^n}]],PrimeQ]],{n,2,30}] (* The program will take a long time to run. *) (* Harvey P. Dale, Jan 08 2019 *)
-
See Fuller link.
-
from math import gcd, lcm
from itertools import combinations
from sympy import isprime
def A075226(n):
m = lcm(*range(1,n+1))
c, mlist = 0, tuple(m//i for i in range(1,n+1))
for l in range(n,-1,-1):
if sum(mlist[:l]) < c:
break
for p in combinations(mlist,l):
s = sum(p)
s //= gcd(s,m)
if s > c and isprime(s):
c = s
return c # Chai Wah Wu, Feb 14 2022
A075227
Smallest odd prime not occurring in the numerator of any of the 2^n subset sums generated from the set 1/1, 1/2, 1/3, ..., 1/n.
Original entry on oeis.org
3, 5, 7, 17, 37, 43, 43, 151, 151, 409, 491, 491, 491, 1087, 2011, 3709, 3709, 7417, 7417, 7417, 19699, 30139, 35573, 35573, 40237, 40237, 132151, 132151, 158551, 158551, 245639, 245639, 961459, 1674769, 1674769, 1674769, 1674769, 4339207
Offset: 1
a(3) = 7 because 7 is the smallest prime not occurring in the numerator of any of the sums 1/1 + 1/2 = 3/2, 1/1 + 1/3 = 4/3, 1/2 + 1/3 = 5/6 and 1/1 + 1/2 + 1/3 = 11/6.
-
import Data.Ratio ((%), numerator)
import Data.Set (Set, empty, fromList, toList, union)
a075227 n = a075227_list !! (n-1)
a075227_list = f 1 empty a065091_list where
f x s ps = head qs : f (x + 1) (s `union` fromList hs) qs where
qs = foldl (flip del)
ps $ filter ((== 1) . a010051') $ map numerator hs
hs = map (+ 1 % x) $ 0 : toList s
del u vs'@(v:vs) = case compare u v
of LT -> vs'; EQ -> vs; GT -> v : del u vs
-- Reinhard Zumkeller, May 28 2013
-
Needs["DiscreteMath`Combinatorica`"]; maxN=20; For[lst={}; prms={}; i=0; n=1, n<=maxN, n++, While[i<2^n-1, i++; s=NthSubset[i, Range[n]]; k=Numerator[Plus@@(1/s)]; If[PrimeQ[k], AppendTo[prms, k]]]; prms=Union[prms]; j=2; While[MemberQ[prms, Prime[j]], j++ ]; AppendTo[lst, Prime[j]]]; lst
(* Second program; does not need Combinatorica *)
a[1] = 3; a[2] = 5; a[n_] := For[nums = (Total /@ Subsets[1/Range[n]]) // Numerator // Union // Select[#, PrimeQ]&; p = 3, p <= Last[nums], p = NextPrime[p], If[FreeQ[nums, p], Print[n, " ", p]; Return[p]]];
Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Sep 10 2017 *)
-
from sympy import sieve
from fractions import Fraction
fracs, newnums, primeset = {0}, {0}, set(sieve.primerange(3, 10**6+1))
for n in range(1, 24):
newfracs = set(Fraction(1, n) + f for f in fracs)
fracs |= newfracs
primeset -= set(f.numerator for f in newfracs)
print(min(primeset), end=", ") # Michael S. Branicky, May 09 2021
A051540
Least common multiple of {2, 5, 8, 11, 14, ..., 3n+2} (A016789).
Original entry on oeis.org
2, 10, 40, 440, 3080, 52360, 52360, 1204280, 15655640, 454013560, 1816054240, 1816054240, 34505030560, 1414706252960, 1414706252960, 66491193889120, 332455969445600, 17620166380616800, 17620166380616800
Offset: 0
a(3) = lcm{2, 5, 8, 11} = 440.
-
List([0..20],n->Lcm(List([0..n],k->3*k+2))); # Muniru A Asiru, Apr 14 2018
-
k:=56; [Lcm([h: h in [2..j by 3]]): j in [2..k by 3]]; // Bruno Berselli, May 03 2011
-
A[0]:= 2:
for n from 1 to 60 do A[n]:= ilcm(A[n-1],3*n+2) od:
seq(A[n],n=0..60); # Robert Israel, Apr 10 2018
-
Table[ Denominator[ Sum[1/i, {i, 2/3, n}]], {n, 1, 20}]
Table[ Apply[ LCM, Join[{1}, Table[2 + 3i, {i, 0, n}]]], {n, 0, 19}]
-
a(n) = lcm(vector(n+1, k, 3*k-1)); \\ Michel Marcus, Apr 10 2018
A075136
Numerator of the generalized harmonic number H(n,4,1).
Original entry on oeis.org
1, 6, 59, 812, 14389, 104038, 534113, 15837352, 177575597, 6681333014, 278042982799, 93928709068, 665521987201, 35665695484178, 684591747070657, 42155877944972752, 42527303541794647, 986175536059084606
Offset: 1
-
a=4; b=1; maxN=20; s=0; Numerator[Table[s+=1/(a n + b), {n, 0, maxN-1}]]
Numerator[Accumulate[1/Range[1,69,4]]] (* Harvey P. Dale, Dec 15 2014 *)
-
sumrecip(n,a,b) = { s=0; default(realprecision,n); forstep(j=b,n,a, s=s+1/j; print1(numerator(s)",") ) }
A074638
Denominator of 1/3 + 1/7 + 1/11 + ... + 1/(4n-1).
Original entry on oeis.org
3, 21, 231, 385, 7315, 168245, 4542615, 140821065, 28164213, 366134769, 15743795067, 739958368149, 12579292258533, 62896461292665, 3710891216267235, 3710891216267235, 248629711489904745, 17652709515783236895, 88263547578916184475, 6972820258734378573525
Offset: 1
The numerators times 4 are
A074637.
-
Table[ Denominator[ Sum[1/i, {i, 3/4, n}]], {n, 1, 20}]
-
a(n) = denominator(sum(i=1, n, 1/(4*i-1))); \\ Michel Marcus, Mar 21 2021
-
from fractions import Fraction
def a(n): return sum(Fraction(1, 4*i-1) for i in range(1, n+1)).denominator
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Mar 21 2021
A074637
Numerator of 4 * H(n,4,3), a generalized harmonic number.
Original entry on oeis.org
4, 40, 524, 976, 20084, 491192, 13935164, 450160544, 93250876, 1249813672, 55206526972, 2657681947952, 46167204272716, 235410309457592, 14140794103168588, 14376406243883968, 978062783205294796
Offset: 1
-
Table[ Numerator[ Sum[1/i, {i, 3/4, n}]], {n, 1, 20}]
Better description from
T. D. Noe, Sep 04 2002
A075137
Numerator of the generalized harmonic number H(n,5,1).
Original entry on oeis.org
1, 7, 83, 697, 1685, 22521, 714167, 6551627, 273085171, 6372562445, 109738148749, 111017326363, 6843690854527, 6909897986791, 494972427791585, 9482037783487391, 85993305141830183, 3724238207261666261
Offset: 1
A075144
Denominator of the generalized harmonic number H(n,5,4).
Original entry on oeis.org
4, 36, 252, 4788, 9576, 277704, 4720968, 61372584, 675098424, 4725688968, 14177066904, 836446947336, 6691575578688, 153906238309824, 5694530817463488, 449867934579615552, 449867934579615552
Offset: 1
A104174
Numerator of the fractional part of a harmonic number.
Original entry on oeis.org
0, 1, 5, 1, 17, 9, 83, 201, 2089, 2341, 551, 2861, 64913, 90653, 114677, 274399, 5385503, 2022061, 42503239, 9276623, 3338549, 3573693, 87368107, 276977179, 7281378067, 7624597867, 71595952403, 74464289303, 2239777822987
Offset: 1
Georg Haass (geha5001(AT)stud.uni-saarland.de), Mar 10 2005
-
h[n_] := Sum[1/k, {k, 1, n}]
Table[Numerator[FractionalPart[h[n]]], {n, 1, 30}]
(* Clark Kimberling, Aug 13 2012 *)
FractionalPart[HarmonicNumber[Range[30]]]//Numerator (* Harvey P. Dale, Jul 28 2019 *)
-
a(n) = numerator(frac(sum(k=1, n, 1/k))); \\ Michel Marcus, Sep 27 2021
-
from sympy import harmonic
def A104174(n): return (lambda x: x.p % x.q)(harmonic(n)) # Chai Wah Wu, Sep 26 2021
A075138
Denominator of the generalized harmonic number H(n,5,1).
Original entry on oeis.org
1, 6, 66, 528, 1232, 16016, 496496, 4468464, 183207024, 4213761552, 71633946384, 71633946384, 4369670729424, 4369670729424, 310246621789104, 5894685813992976, 53052172325936784, 2281243410015281712
Offset: 1
Comments