A033919
Odd k for which k+2^m is composite for all m < k.
Original entry on oeis.org
773, 2131, 2491, 4471, 5101, 7013, 8543, 10711, 14717, 17659, 19081, 19249, 20273, 21661, 22193, 28433, 35461, 37967, 39079, 40291, 41693, 48527, 60443, 60451, 60947, 64133, 75353, 78557
Offset: 1
Out-of-date information from Payam Samidoost's website corrected, using the current status on the dual Sierpiński problem from "Five or Bust," by Phil Moore (moorep(AT)lanecc.edu), Dec 14 2009
Broken link to Payam Samidoost's website replaced with link to archive in the Wayback Machine by
Felix Fröhlich, Jul 11 2014
26213 removed from sequence following an email message from Maximilian Pacher, who reports that 2^1271+26213 is prime. -
N. J. A. Sloane, Dec 31 2015
A206001
Least k such that k*2^m + 1 has a covering set with precisely n primes.
Original entry on oeis.org
271129, 78557, 1777613, 169073869
Offset: 6
271129 has the covering set {3, 5, 7, 13, 17, 241}.
78557 has the covering set {3, 5, 7, 13, 19, 37, 73}.
1777613 has the covering set {3, 5, 7, 13, 17, 19, 109, 433}.
169073869 has the covering set {3, 5, 7, 11, 13, 41, 61, 151, 331}.
A244566
Odd integers n such that for every integer k>0, n*2^k+1 has a divisor in the set { 3, 5, 7, 13, 17, 97, 257 }.
Original entry on oeis.org
327739, 5455789, 8879993, 9043831, 21823667, 25763447, 29949559, 75037639, 92732027, 119863547, 119879899, 122091961, 146880319, 151060223, 152106751, 163378771, 181339441, 182384417, 182646049, 218039041, 232190537
Offset: 1
-
is(n)=my(G=578477445,t=Mod(n,G)); for(k=1,768,t*=2; if(gcd(t+1, G)==1, return(0))); n%2 \\ Charles R Greathouse IV, Jul 18 2014
A263169
Smallest positive k such that 78557^k + 2^n is prime, or 0 if no such value exists.
Original entry on oeis.org
0, 33, 2, 0, 76
Offset: 0
A263391
Sierpiński numbers that have at least two covering sets.
Original entry on oeis.org
12151397, 31210219, 45181667, 56191673, 66887071, 68468753, 69169397, 71307347, 114921271, 122311103, 133228283, 152252267, 154337567, 182479909, 185282537, 192413177, 210465533, 220192013, 226521259, 235663343, 236281883, 253282909, 275248343, 282777829
Offset: 1
For every k >= 1, 12151397*2^k + 1 has a divisor in the set {3, 5, 7, 13, 19, 37, 73} and also in the set {3, 5, 7, 13, 19, 73, 109}. 12151397 is therefore in the sequence.
A269326
Let k be a number which is simultaneously Sierpiński and Riesel, and let P be a set of primes which cover every number of the form k*2^m + 1 and of the form k*2^m - 1 with m >= 1. Sequence shows elements of the set P which has the property that the product of its primes is as small as it is possible.
Original entry on oeis.org
3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 61, 73, 97, 109, 151, 241, 257, 331
Offset: 1
A270271
Odd numbers n such that for every k >= 1, n*2^k + 1 has a divisor in the set {3, 5, 17, 257, 641, 65537, 6700417}.
Original entry on oeis.org
201446503145165177, 1007236913771681629, 1697906240793858917, 2331023822106839599, 2935363331541925531, 3367034409844073483, 3914042604075779837, 4863495246870308311, 5036162578625852633, 5590196669446332863, 6705290764721718679, 7284449444083822547
Offset: 1
- M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, pp. 72-73.
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..64
- Chris Caldwell, The Prime Glossary, Sierpinski number
- W. Sierpiński, Sur un problème concernant les nombres k * 2^n + 1, Elem. Math., 15 (1960), pp. 73-74.
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
-
lst:=[]; e:=2^64; P:=PrimeDivisors(e-1); C:=[1, 1, 1, 1, 1, 1, 33]; Pr:=&*[P[i]: i in [1..#P]]; S:=CRT([Modexp(2, C[i], P[i]): i in [1..#C]], P); for t in [1..33] do a:=S+Pr; g:=Gcd(a, e); S:=Floor(a/g); Append(~lst, S); end for; Sort(lst)[1..12];
A270895
Sierpiński numbers that are squares.
Original entry on oeis.org
18213931681, 5044241991721, 6093734165401, 6278567569849, 17919144076201, 52536446729209, 56470430531761, 72659547739249, 107737943736721, 123343213788001, 136925780937841, 170306127919321, 211292941174561, 296693149397089, 321058916825689
Offset: 1
A270896
Values of n for which n^2 is a Sierpiński number.
Original entry on oeis.org
134959, 2245939, 2468549, 2505707, 4233101, 7248203, 7514681, 8524057, 10379689, 11105999, 11701529, 13050139, 14535919, 17224783, 17918117, 20887471, 22609447, 23352049, 26616221, 29156453, 29583953, 29913997, 31273301, 32046613, 35672821, 35882309
Offset: 1
A270994
a(n) = 9454129 + 11184810*n.
Original entry on oeis.org
9454129, 20638939, 31823749, 43008559, 54193369, 65378179, 76562989, 87747799, 98932609, 110117419, 121302229, 132487039, 143671849, 154856659, 166041469, 177226279, 188411089, 199595899, 210780709, 221965519, 233150329, 244335139, 255519949, 266704759, 277889569, 289074379, 300259189
Offset: 0
a(1) = 9454129 + 11184810*1 = 20638939.
-
[9454129 + 11184810*n: n in [0..30]]; // Vincenzo Librandi, Mar 29 2016
-
A270994:=n->9454129 + 11184810*n: seq(A270994(n), n=0..40); # Wesley Ivan Hurt, Apr 02 2016
-
Table[9454129 + 11184810*n, {n, 0, 100}] (* G. C. Greubel, Mar 28 2016 *)
-
a(n) = 9454129 + 11184810*n;
-
x='x+O('x^99); Vec((9454129+1730681*x)/(1-x)^2)
-
for n in range(0,100):print(9454129+11184810*n) # Soumil Mandal, Apr 03 2016
Comments