cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A097310 Chebyshev T-polynomials T(n,14) with Diophantine property.

Original entry on oeis.org

1, 14, 391, 10934, 305761, 8550374, 239104711, 6686381534, 186979578241, 5228741809214, 146217791079751, 4088869408423814, 114342125644787041, 3197490648645613334, 89415396036432386311, 2500433598371461203374, 69922725358364481308161, 1955335876435834015425134
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

a(n)^2 - 195 b(n)^2 = +1 with b(n):=A097311(n) gives all nonnegative solutions of this Pell equation.
a(195+390k)-1 and a(195+390k)+1 are consecutive odd powerful numbers. See A076445. - T. D. Noe, May 04 2006
Except for the first term, positive values of x (or y) satisfying x^2 - 28xy + y^2 + 195 = 0. - Colin Barker, Feb 23 2014

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{28,-1},{1,14},20] (* Harvey P. Dale, Jan 29 2014 *)
    CoefficientList[Series[(1 - 14 x)/(1 - 28 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 24 2014 *)
  • PARI
    Vec((1-14*x)/(1-28*x+x^2) + O(x^100)) \\ Colin Barker, Feb 23 2014
  • Sage
    [lucas_number2(n,28,1)/2 for n in range(0,16)] # Zerinvary Lajos, Jun 27 2008
    

Formula

a(n) = 28*a(n-1) - a(n-2), a(-1):= 14, a(0)=1.
a(n) = T(n, 14)= (S(n, 28)-S(n-2, 28))/2 = S(n, 28)-14*S(n-1, 28) with T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp.second, kind. See A053120 and A049310. S(n, 28)=A097311(n).
a(n) = (ap^n + am^n)/2 with ap := 14+sqrt(195) and am := 14-sqrt(195).
a(n) = sum(((-1)^k)*(n/(2*(n-k)))*binomial(n-k, k)*(2*14)^(n-2*k), k=0..floor(n/2)), n>=1.
G.f.: (1-14*x)/(1-28*x+x^2).
a(n) = sqrt(1 + 195*A097311(n)^2), n>=0.

Extensions

More terms from Colin Barker, Feb 23 2014

A363190 Odd powerful numbers (A062739) k such that the next powerful number after k is also odd.

Original entry on oeis.org

25, 121, 225, 343, 1089, 1323, 2187, 2197, 3025, 3087, 3249, 5929, 6125, 6859, 7803, 8575, 9261, 10125, 11881, 11907, 14161, 15125, 16641, 16807, 19683, 19773, 21025, 22707, 25921, 27889, 29241, 29791, 30375, 33275, 36125, 41067, 42849, 44217, 45125, 45369, 49729
Offset: 1

Views

Author

Amiram Eldar, May 21 2023

Keywords

Comments

A076445 is a subsequence if there are no three consecutive integers that are powerful numbers (A001694).

Examples

			25 = 5^2 is a term since it is an odd powerful number and the next powerful number, 27 = 3^3, is also odd.
		

Crossrefs

Programs

  • Mathematica
    With[{pow = Select[Range[10^5], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]}, pow[[Select[Range[Length[pow] - 1], OddQ[pow[[#]]] && OddQ[pow[[#+1]]] &]]]]
  • PARI
    lista(kmax) = {my(c = 0); for(k = 1, kmax, if(ispowerful(k), c++; if(k%2, print1(c, ", ")))); }

A238799 a(0) = 1, a(n+1) = 2*a(n)^3 + 3*a(n).

Original entry on oeis.org

1, 5, 265, 37220045, 103124220135120334842385, 2193370648451279691104497113491599222165108730278225579497595691360405
Offset: 0

Views

Author

Arkadiusz Wesolowski, Mar 05 2014

Keywords

Comments

a(6) has 209 digits and is too large to include.
Except for the first term, this is a subsequence of A175180.
The squares larger than 1 are in A076445.
If we define u(0) = 1 , u(n+1) = (u(n)/3)*(u(n)^2+9) / (u(n)^2 + 1), then u(n) = a(n) / A378683(n) ; this is Halley's method to calculate sqrt(3). - Robert FERREOL, Dec 21 2024

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[n] == 2*a[n - 1]^3 + 3*a[n - 1]}, a[n], {n, 5}]
    NestList[2#^3+3#&,1,5] (* Harvey P. Dale, Mar 22 2023 *)
  • PARI
    a=1; print1(a, ", "); for(n=1, 5, b=2*a^3+3*a; print1(b, ", "); a=b);
    
  • PARI
    { A238799(n) = my(q=Mod(x,x^2-3)); lift( (1+q)*(2+q)^((3^n-1)/2) + (1-q)*(2-q)^((3^n-1)/2) )/2; } \\ Max Alekseyev, Sep 04 2018

Formula

a(n) = sqrt(2) * sinh( 3^n * arcsinh(1/sqrt(2)) ) = (1+sqrt(3))/2 * (2+sqrt(3))^((3^n-1)/2) + (1-sqrt(3))/2 * (2-sqrt(3))^((3^n-1)/2). - Max Alekseyev, Sep 04 2018
a(n) = ((1 + sqrt(3))^(3^n) + (1 - sqrt(3))^(3^n))/2^((3^n+1)/2) = A002531(3^n) = A080040(3^n)/2^((3^n+1)/2). - Robert FERREOL, Nov 19 2024

A118894 Numbers m such that the Pell equation x^2-m*y^2=1 has fundamental solution with x even.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 27, 31, 35, 43, 47, 51, 59, 63, 67, 71, 75, 79, 83, 87, 91, 99, 103, 107, 115, 119, 123, 127, 131, 135, 139, 143, 151, 159, 163, 167, 171, 175, 179, 187, 191, 195, 199, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 263, 267
Offset: 1

Views

Author

T. D. Noe, May 04 2006

Keywords

Comments

Numbers m such that A002350(m) is even. These m can be used to generate consecutive odd powerful numbers, as in A076445. As shown by Lang, the solution of Pell's equation is greatly simplified by Chebyshev polynomials of the first kind T(n,x), which is illustrated in A001075 for the case m=3. In that case, the solutions are x=T(n,2), for integer n>0. For any m in this sequence, let E(k)=T(m+2mk,A002350(m)). Then E(k)-1 and E(k)+1 are consecutive odd powerful numbers for k=0,1,2,...

Crossrefs

Cf. A001075, A001091, A023038, A001081, A001085, A077424, A097310 (x solutions for m=3, 15, 35, 63, 99, 143, 195).

A175180 Numbers k such that k^2 + 2 is powerful in the sense of A001694.

Original entry on oeis.org

5, 265, 13775, 716035, 9980583, 37220045, 1934726305
Offset: 1

Views

Author

Michel Lagneau, Mar 01 2010

Keywords

Comments

This sequence is infinite (F. Luca in De Koninck).
The values of k^2 are a subset of A076445, so 23 terms of the sequence are known from there. - R. J. Mathar, Mar 05 2010
Together with 1, supersequence of A238799. - Arkadiusz Wesolowski, Mar 06 2014
From Amiram Eldar, Feb 23 2024: (Start)
a(8) <= 100568547815.
A041042(2*k) is a term for all k >= 0 (since 3^3 * A041043(n)^2 - A041042(n)^2 = -1 if n is odd and 2 if n is even). (End)

Examples

			5 is in the sequence because 5^2 + 2 = 3^3 is powerful.
265 is in the sequence because 265^2 + 2 = 51^2*3^3 is powerful.
13775 is in the sequence because 13775^2 + 2 = 2651^2 * 3^3 is powerful.
		

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 265, p. 71, Ellipses, Paris, 2008.

Crossrefs

Programs

  • Mathematica
    q[n_] := AllTrue[FactorInteger[n^2+2][[;;, 2]], # > 1 &]; Select[Range[10^6], q] (* Amiram Eldar, Feb 23 2024 *)
  • PARI
    is(n)=ispowerful(n^2+2) \\ Charles R Greathouse IV, Feb 04 2013

Extensions

Examples rephrased by R. J. Mathar, Feb 24 2010, Mar 05 2010
a(7) from Amiram Eldar, Feb 23 2024

A365983 Even numbers k such that k^2 - 1 is a powerful number.

Original entry on oeis.org

26, 70226, 130576328, 189750626, 512706121226, 13837575261124, 99612037019890, 1385331749802026
Offset: 1

Views

Author

Jud McCranie, Sep 24 2023

Keywords

Comments

This sequence is a subsequence of A060860 (the even terms) and a supersequence of A094835. All the terms of A094835 are in this sequence, but 130576328 is not in A094835. A094835 also shows that this sequence is infinite.
Terms A076445(n)+1 are terms of this sequence because A076445(n) and A076445(n)+2 are powerful and (A076445(n)+1)^2-1 = A076445(n) * (A076445(n)+2), which is also powerful.
a(n) - 1 is an odd powerful number (A062739). - Amiram Eldar, Feb 23 2024

Examples

			26^2 - 1 = 675 = 3^3 * 5^2 is powerful.
130576328^2 - 1 = 17050177433963583 = 3^2 * 7^3 * 13^2 * 293^2 * 617^2, whose exponents are all greater than 1, so it is powerful.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, entries 70226 and 485.

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{p = Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3), 2}, {i, 1, Sqrt[max/j^3], 2}]]], i}, i = Position[Differences[p], 2] // Flatten; Sqrt[p[[i]]*(p[[i]] + 2) + 1]]; seq[10^10] (* Amiram Eldar, Feb 23 2024 *)
  • PARI
    isok(k) = !(k%2) && ispowerful(k^2-1); \\ Michel Marcus, Sep 25 2023

Extensions

a(5)-a(8) from Amiram Eldar, Feb 23 2024
Previous Showing 11-16 of 16 results.