A380396
a(n) is the sum of the unitary divisors of n that are cubes.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
a(8) = 9 since 8 has 2 unitary divisors that are cubes, 1 = 1^3 and 8 = 2^3, and 1 + 8 = 9.
a(216) = 252 since 216 has 4 unitary divisors that are cubes, 1 = 1^3, 8 = 2^3, 27 = 3^3 and 216 = 6^3, and 1 + 8 + 27 + 216 = 252.
-
f[p_, e_] := If[Divisible[e, 3], p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%3, 1, f[i, 1]^f[i, 2] + 1));}
A383763
The sum of unitary divisors of n that are exponentially squarefree numbers.
Original entry on oeis.org
1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68
Offset: 1
-
f[p_, e_] := If[SquareFreeQ[e], p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(issquarefree(f[i,2]), f[i,1]^f[i,2]+1, 1));}
A006087
Unitary harmonic means H(n) of the unitary harmonic numbers (A006086).
Original entry on oeis.org
1, 2, 3, 4, 4, 7, 7, 6, 9, 13, 10, 13, 10, 7, 11, 15, 10, 15, 9, 12, 7, 17, 12, 18, 16, 14, 19, 20, 19, 12, 15, 20, 10, 20, 18, 22, 19, 13, 12, 13, 17, 29, 18, 33, 20, 23, 29, 34, 23, 22, 31, 38, 24, 23, 38, 33, 37, 40, 19, 38, 24, 37, 29, 40, 22, 34, 24, 33
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Donovan Johnson, Table of n, a(n) for n = 1..290
- Peter Hagis, Jr. and Graham Lord, Unitary harmonic numbers, Proc. Amer. Math. Soc., 51 (1975), 1-7.
- Peter Hagis, Jr. and Graham Lord, Unitary harmonic numbers, Proc. Amer. Math. Soc., 51 (1975), 1-7. (Annotated scanned copy)
-
import Data.Ratio ((%), numerator, denominator)
a006087 n = a006087_list !! (n-1)
a006087_list = map numerator $ filter ((== 1) . denominator) $
map uhm [1..] where uhm n = (n * a034444 n) % (a034448 n)
-- Reinhard Zumkeller, Mar 17 2012
-
A034444 := proc(n) 2^nops(ifactors(n)[2]) ; end: A034448 := proc(n) local ans,i,ifs ; ans :=1 ; ifs := ifactors(n)[2] ; for i from 1 to nops(ifs) do ans := ans*(1+ifs[i][1]^ifs[i][2]) ; od ; RETURN(ans) ; end: A006086 := proc(n) n*A034444(n)/A034448(n) ; end: for n from 1 to 5000000 do uhn := A006086(n) : if type(uhn,'integer') then printf("%d, ",uhn) ; fi ; od : # R. J. Mathar, Jun 06 2007
-
ud[n_] := 2^PrimeNu[n]; usigma[n_] := Sum[ If[ GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; a[n_] := n*ud[n]/usigma[n]; a[1] = 1; Reap[ Do[ If[ IntegerQ[h = a[n]], Print[h]; Sow[h]], {n, 1, 10^7}]][[2, 1]] (* Jean-François Alcover, May 16 2013 *)
uh[n_] := n * Times @@ (2/(1 + Power @@@ FactorInteger[n])); uh[1] = 1; Select[Array[uh, 10^6], IntegerQ] (* Amiram Eldar, Mar 10 2023 *)
-
{ud(n)=2^omega(n)} {sud(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))} {H(n)=n*ud(n)/sud(n)} for(n=1,10000000,if(((n*ud(n))%sud(n))==0,print1(H(n)","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
-
uhmean(n) = {my(f = factor(n)); n*prod(i=1, #f~, 2/(1+f[i, 1]^f[i, 2])); };
lista(kmax) = {my(uh); for(k = 1, kmax, uh = uhmean(k); if(denominator(uh) == 1, print1(uh, ", ")));} \\ Amiram Eldar, Mar 10 2023
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
A286880
Square array A(n,k), n>=0, k>=1, read by antidiagonals, where row n is the sum of n-th powers of unitary divisors of k (divisors d such that gcd(d, k/d) = 1).
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 2, 4, 5, 1, 2, 5, 10, 9, 1, 4, 6, 17, 28, 17, 1, 2, 12, 26, 65, 82, 33, 1, 2, 8, 50, 126, 257, 244, 65, 1, 2, 9, 50, 252, 626, 1025, 730, 129, 1, 4, 10, 65, 344, 1394, 3126, 4097, 2188, 257, 1, 2, 18, 82, 513, 2402, 8052, 15626, 16385, 6562, 513, 1, 4, 12, 130, 730, 4097, 16808, 47450, 78126, 65537, 19684, 1025, 1
Offset: 0
Square array begins:
1, 2, 2, 2, 2, 4, ...
1, 3, 4, 5, 6, 12, ...
1, 5, 10, 17, 26, 50, ...
1, 9, 28, 65, 126, 252, ...
1, 17, 82, 257, 626, 1394, ...
1, 33, 244, 1025, 3126, 8052, ...
A360720
a(n) is the sum of unitary divisors of n that are powerful (A001694).
Original entry on oeis.org
1, 1, 1, 5, 1, 1, 1, 9, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 9, 26, 1, 28, 5, 1, 1, 1, 33, 1, 1, 1, 50, 1, 1, 1, 9, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 28, 1, 9, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 90, 1, 1, 26, 5, 1, 1, 1, 17, 82
Offset: 1
-
f[p_, e_] := If[e == 1, 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2] + 1));}
-
for(n=1, 100, print1(direuler(p=2, n, (1 - p^3*X^4 - p^2*X^3 + p^3*X^3) / ((1 - X) * (1 - p^2*X^2)))[n], ", ")) \\ Vaclav Kotesovec, Feb 18 2023
A220218
Numbers where all exponents in its prime factorization are one less than a prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1
Apart from the first term, a subsequence of
A096432.
-
a220218 n = a220218_list !! (n-1)
a220218_list = 1 : filter
(all (== 1) . map (a010051' . (+ 1)) . a124010_row) [1..]
-- Reinhard Zumkeller, Nov 30 2015
-
Select[Range[100],AllTrue[Transpose[FactorInteger[#]][[2]]+1,PrimeQ]&] (* Harvey P. Dale, Sep 29 2014 *)
-
is(n)=vecmin(apply(n->isprime(n+1),factor(max(n,2))[,2])) \\ Charles R Greathouse IV, Dec 07 2012
A222084
Number of the least divisors of n whose LCM is equal to n.
Original entry on oeis.org
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 5, 2, 4, 3, 3, 2, 6, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 6, 2, 3, 3, 5, 2, 5, 2, 4, 4, 3, 2, 8, 3, 5, 3, 4, 2, 7, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 5, 2, 4, 3, 4, 2, 7, 2, 3, 5, 4, 3, 5, 2, 7, 5, 3, 2, 6, 3, 3, 3
Offset: 1
For n=40, the divisors are (1, 2, 4, 5, 8, 10, 20, 40), so tau(40)=8.
lcm(1, 2, 4, 5, 8) = 40, but lcm(1, 2, 4, 5) = 20 < 40, so tau#(40)=5.
-
with(numtheory);
A222084:=proc(q)
local a,b,c,j,n; print(1);
for n from 2 to q do a:=ifactors(n)[2]; b:=nops(a); c:=0;
for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
for j from 1 to b do if a[j]=c then break; fi; od; print(j); od; end:
A222084(100000);
-
Table[Count[ Divisors[n] , q_Integer /; q <= Max[Power @@@ FactorInteger[n]]], {n, 87}] (* Wouter Meeussen, Feb 09 2013 *)
-
a(n) = {my(d = divisors(n), k = 1); while (lcm(vector(k, j, d[j])) != n, k++); k;} \\ Michel Marcus, Mar 13 2018
A225174
Square array read by antidiagonals: T(m,n) = greatest common unitary divisor of m and n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1
Offset: 1
Array begins
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, ...
1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, ...
1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, ...
1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, ...
1, 2, 3, 1, 1, 6, 1, 1, 1, 2, 1, 3, ...
1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, ...
...
The unitary divisors of 3 are 1 and 3, those of 6 are 1,2,3,6; so T(6,3) = T(3,6) = 3.
- M. Lal, H. Wareham and R. Mifflin, Iterates of the bi-unitary totient function, Utilitas Math., 10 (1976), 347-350.
-
# returns the greatest common unitary divisor of m and n
f:=proc(m,n)
local i,ans;
ans:=1;
for i from 1 to min(m,n) do
if ((m mod i) = 0) and (igcd(i,m/i) = 1) then
if ((n mod i) = 0) and (igcd(i,n/i) = 1) then ans:=i; fi;
fi;
od;
ans; end;
-
f[m_, n_] := Module[{i, ans=1}, For[i=1, i<=Min[m, n], i++, If[Mod[m, i]==0 && GCD[i, m/i]==1, If[Mod[n, i]==0 && GCD[i, n/i]==1, ans=i]]]; ans];
Table[f[m-n+1, n], {m, 1, 14}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 19 2018, translated from Maple *)
-
up_to = 20100; \\ = binomial(200+1,2)
A225174sq(m,n) = { my(a=min(m,n),b=max(m,n),md=0); fordiv(a,d,if(0==(b%d)&&1==gcd(d,a/d)&&1==gcd(d,b/d),md=d)); (md); };
A225174list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, if(i++ > up_to, return(v)); v[i] = A225174sq((a-(col-1)),col))); (v); };
v225174 = A225174list(up_to);
A225174(n) = v225174[n]; \\ Antti Karttunen, Nov 28 2018
A366536
The number of unitary divisors of the cubefree numbers (A004709).
Original entry on oeis.org
1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 2, 8, 2, 4, 4, 4, 4, 2, 4, 4, 2, 8, 2, 4, 4, 4, 2, 2, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 8, 2, 4, 4, 8, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 8, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8
Offset: 1
-
f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
-
lista(max) = for(k = 1, max, my(e = factor(k)[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(2^(#e), ", ")));
-
from sympy.ntheory.factor_ import udivisor_count
from sympy import mobius, integer_nthroot
def A366536(n):
def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return udivisor_count(m) # Chai Wah Wu, Aug 05 2024
A366537
The sum of unitary divisors of the cubefree numbers (A004709).
Original entry on oeis.org
1, 3, 4, 5, 6, 12, 8, 10, 18, 12, 20, 14, 24, 24, 18, 30, 20, 30, 32, 36, 24, 26, 42, 40, 30, 72, 32, 48, 54, 48, 50, 38, 60, 56, 42, 96, 44, 60, 60, 72, 48, 50, 78, 72, 70, 54, 72, 80, 90, 60, 120, 62, 96, 80, 84, 144, 68, 90, 96, 144, 72, 74, 114, 104, 100, 96
Offset: 1
-
s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, # < 3 &], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
-
lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));
-
from sympy.ntheory.factor_ import udivisor_sigma
from sympy import mobius, integer_nthroot
def A366537(n):
def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return udivisor_sigma(m) # Chai Wah Wu, Aug 05 2024
Comments