cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 113 results. Next

A380396 a(n) is the sum of the unitary divisors of n that are cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2025

Keywords

Comments

The number of unitary divisors of n that are cubes is A380395(n).

Examples

			a(8) = 9 since 8 has 2 unitary divisors that are cubes, 1 = 1^3 and 8 = 2^3, and 1 + 8 = 9.
a(216) = 252 since 216 has 4 unitary divisors that are cubes, 1 = 1^3, 8 = 2^3, 27 = 3^3 and 216 = 6^3, and 1 + 8 + 27 + 216 = 252.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, 3], p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%3, 1, f[i, 1]^f[i, 2] + 1));}

Formula

a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * [d is cube], where [] is the Iverson bracket.
a(n) >= 1, with equality if and only if n is not in A366761.
a(n) <= A113061(n), with equality if and only if n is biquadratefree (A046100).
Multiplicative with a(p^e) = p^e + 1 if e is divisible by 3, and 1 otherwise.
Sum_{k=1..n} a(k) ~ c * n^(4/3) / 4, where c = zeta(4/3)/zeta(7/3) = 2.54455250463133711749... .
Dirichlet g.f.: zeta(s) * zeta(3*s-3) / zeta(4*s-3).
In general, the average order of the sum of the unitary divisors that are m-powers is c * n^(1+1/m) / (m+1), where c = zeta(1+1/m)/zeta(2+1/m), and its Dirichlet g.f. is zeta(s) * zeta(m*s-m) / zeta((m+1)*s-m), both for m >= 2.

A383763 The sum of unitary divisors of n that are exponentially squarefree numbers.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, May 09 2025

Keywords

Comments

The number of these divisors is A383762(n) and the largest of them is A383764(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[SquareFreeQ[e], p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(issquarefree(f[i,2]), f[i,1]^f[i,2]+1, 1));}

Formula

Multiplicative with a(p^e) = p^e + 1 if e is squarefree (A005117), and 1 otherwise.
a(n) <= A034448(n), with equality if and only if n is an exponentially squarefree number (A209061).
a(n) <= A365682(n), with equality if and only if n is a squarefree number.

A006087 Unitary harmonic means H(n) of the unitary harmonic numbers (A006086).

Original entry on oeis.org

1, 2, 3, 4, 4, 7, 7, 6, 9, 13, 10, 13, 10, 7, 11, 15, 10, 15, 9, 12, 7, 17, 12, 18, 16, 14, 19, 20, 19, 12, 15, 20, 10, 20, 18, 22, 19, 13, 12, 13, 17, 29, 18, 33, 20, 23, 29, 34, 23, 22, 31, 38, 24, 23, 38, 33, 37, 40, 19, 38, 24, 37, 29, 40, 22, 34, 24, 33
Offset: 1

Views

Author

Keywords

Comments

Let d(n) and sigma(n) be number and sum of unitary divisors of n; then unitary harmonic mean of unitary divisors is H(n)=n*d(n)/sigma(n).
Each term appears a finite number of times in the sequence (Hagis and Lord, 1975). - Amiram Eldar, Mar 10 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator, denominator)
    a006087 n = a006087_list !! (n-1)
    a006087_list = map numerator $ filter ((== 1) . denominator) $
       map uhm [1..]  where uhm n = (n * a034444 n) % (a034448 n)
    -- Reinhard Zumkeller, Mar 17 2012
  • Maple
    A034444 := proc(n) 2^nops(ifactors(n)[2]) ; end: A034448 := proc(n) local ans,i,ifs ; ans :=1 ; ifs := ifactors(n)[2] ; for i from 1 to nops(ifs) do ans := ans*(1+ifs[i][1]^ifs[i][2]) ; od ; RETURN(ans) ; end: A006086 := proc(n) n*A034444(n)/A034448(n) ; end: for n from 1 to 5000000 do uhn := A006086(n) : if type(uhn,'integer') then printf("%d, ",uhn) ; fi ; od : # R. J. Mathar, Jun 06 2007
  • Mathematica
    ud[n_] := 2^PrimeNu[n]; usigma[n_] := Sum[ If[ GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; a[n_] := n*ud[n]/usigma[n]; a[1] = 1; Reap[ Do[ If[ IntegerQ[h = a[n]], Print[h]; Sow[h]], {n, 1, 10^7}]][[2, 1]] (* Jean-François Alcover, May 16 2013 *)
    uh[n_] := n * Times @@ (2/(1 + Power @@@ FactorInteger[n])); uh[1] = 1; Select[Array[uh, 10^6], IntegerQ] (* Amiram Eldar, Mar 10 2023 *)
  • PARI
    {ud(n)=2^omega(n)} {sud(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))} {H(n)=n*ud(n)/sud(n)} for(n=1,10000000,if(((n*ud(n))%sud(n))==0,print1(H(n)","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
    
  • PARI
    uhmean(n) = {my(f = factor(n)); n*prod(i=1, #f~, 2/(1+f[i, 1]^f[i, 2])); };
    lista(kmax) = {my(uh); for(k = 1, kmax, uh = uhmean(k); if(denominator(uh) == 1, print1(uh, ", ")));} \\ Amiram Eldar, Mar 10 2023
    

Formula

a(n) = A103339(A006086(n)). - Reinhard Zumkeller, Mar 17 2012

Extensions

More terms from R. J. Mathar, Jun 06 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008

A286880 Square array A(n,k), n>=0, k>=1, read by antidiagonals, where row n is the sum of n-th powers of unitary divisors of k (divisors d such that gcd(d, k/d) = 1).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 4, 5, 1, 2, 5, 10, 9, 1, 4, 6, 17, 28, 17, 1, 2, 12, 26, 65, 82, 33, 1, 2, 8, 50, 126, 257, 244, 65, 1, 2, 9, 50, 252, 626, 1025, 730, 129, 1, 4, 10, 65, 344, 1394, 3126, 4097, 2188, 257, 1, 2, 18, 82, 513, 2402, 8052, 15626, 16385, 6562, 513, 1, 4, 12, 130, 730, 4097, 16808, 47450, 78126, 65537, 19684, 1025, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2017

Keywords

Comments

For row r > 0, Sum_{k=1..n} A(r,k) ~ zeta(r+1) * n^(r+1) / ((r+1) * zeta(r+2)). - Vaclav Kotesovec, May 20 2021

Examples

			Square array begins:
1,   2,    2,     2,     2,     4,  ...
1,   3,    4,     5,     6,    12,  ...
1,   5,   10,    17,    26,    50,  ...
1,   9,   28,    65,   126,   252,  ...
1,  17,   82,   257,   626,  1394,  ...
1,  33,  244,  1025,  3126,  8052,  ...
		

Crossrefs

Formula

Dirichlet g.f. of row n: zeta(s)*zeta(s-n)/zeta(2*s-n).

A360720 a(n) is the sum of unitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 9, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 9, 26, 1, 28, 5, 1, 1, 1, 33, 1, 1, 1, 50, 1, 1, 1, 9, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 28, 1, 9, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 90, 1, 1, 26, 5, 1, 1, 1, 17, 82
Offset: 1

Views

Author

Amiram Eldar, Feb 18 2023

Keywords

Comments

The number of these divisors is given by A323308.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, f[i, 1]^f[i, 2] + 1));}
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p^3*X^4 - p^2*X^3 + p^3*X^3) / ((1 - X) * (1 - p^2*X^2)))[n], ", ")) \\ Vaclav Kotesovec, Feb 18 2023

Formula

Multiplicative with a(p) = 1 and a(p^e) = p^e + 1 for e > 1.
a(n) <= A034448(n), with equality if and only if n is powerful (A001694).
a(n) <= A183097(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(s)*zeta(s-1)*Product_{p prime} (1 - p^(1-s) + p^(2-2*s) - p^(2-3*s)).
From Vaclav Kotesovec, Feb 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{primes p} (1 - p^(3-4*s) - p^(2-3*s) + p^(3-3*s)).
Sum_{k=1..n} a(k) ~ c * zeta(3/2) * n^(3/2) / 3, where c = Product_{primes p} (1 + 1/p^(3/2) - 1/p^(5/2) - 1/p^3) = 1.48039182258752809541724060173644... (End)
a(n) = A034448(A057521(n)) (the sum of unitary divisors of the powerful part of n). - Amiram Eldar, Dec 12 2023
a(n) = A034448(n)/A092261(n). - Amiram Eldar, Jun 19 2025

A220218 Numbers where all exponents in its prime factorization are one less than a prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Keywords

Comments

Sequence has positive density, between 0.83 and 0.89; probably about 0.87951.
The numbers of terms not exceeding 10^k, for k=1,2,..., are 9, 90, 880, 8796, 87956, 879518, 8795126, 87951173, 879511794, ... The asymptotic density of this sequence is Product_{p prime} (1 - 1/p^3 + Sum_{q prime >= 5} (p-1)/p^q) = 0.87951176583716527413... - Amiram Eldar, Mar 20 2021
Numbers whose sets of unitary divisors (A077610) and modified exponential divisors (A379027) coincide. - Amiram Eldar, Dec 14 2024

Crossrefs

Apart from the first term, a subsequence of A096432.

Programs

  • Haskell
    a220218 n = a220218_list !! (n-1)
    a220218_list = 1 : filter
                   (all (== 1) . map (a010051' . (+ 1)) . a124010_row) [1..]
    -- Reinhard Zumkeller, Nov 30 2015
  • Mathematica
    Select[Range[100],AllTrue[Transpose[FactorInteger[#]][[2]]+1,PrimeQ]&] (* Harvey P. Dale, Sep 29 2014 *)
  • PARI
    is(n)=vecmin(apply(n->isprime(n+1),factor(max(n,2))[,2])) \\ Charles R Greathouse IV, Dec 07 2012
    

A222084 Number of the least divisors of n whose LCM is equal to n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 5, 2, 4, 3, 3, 2, 6, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 6, 2, 3, 3, 5, 2, 5, 2, 4, 4, 3, 2, 8, 3, 5, 3, 4, 2, 7, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 5, 2, 4, 3, 4, 2, 7, 2, 3, 5, 4, 3, 5, 2, 7, 5, 3, 2, 6, 3, 3, 3
Offset: 1

Views

Author

Paolo P. Lava, Feb 07 2013

Keywords

Comments

If we write n as the product of its prime factors, n = p1^a1*p2^a2*p3^a3*...*pr^ar, then tau#(n) gives the number of divisors from 1 to max(p1^a1, p2^a2, p3^a3, ..., pr^ar).
In general tau#(n) <= tau(n).
Also, tau#(n) = tau(n) is A000961, tau#(n) < tau(n) is A024619.
For any prime number p tau(p) = tau#(p) = 2.
tau#(n) = 3 only for semiprimes (A001358).

Examples

			For n=40, the divisors are (1, 2, 4, 5, 8, 10, 20, 40), so tau(40)=8.
lcm(1, 2, 4, 5, 8) = 40, but lcm(1, 2, 4, 5) = 20 < 40, so tau#(40)=5.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A222084:=proc(q)
    local a,b,c,j,n; print(1);
    for n from 2 to q do a:=ifactors(n)[2]; b:=nops(a); c:=0;
      for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
      a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
      for j from 1 to b do if a[j]=c then break; fi; od; print(j); od; end:
    A222084(100000);
  • Mathematica
    Table[Count[ Divisors[n] , q_Integer /; q <= Max[Power @@@ FactorInteger[n]]], {n, 87}] (* Wouter Meeussen, Feb 09 2013 *)
  • PARI
    a(n) = {my(d = divisors(n), k = 1); while (lcm(vector(k, j, d[j])) != n, k++); k;} \\ Michel Marcus, Mar 13 2018

A225174 Square array read by antidiagonals: T(m,n) = greatest common unitary divisor of m and n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, May 01 2013

Keywords

Examples

			Array begins
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, ...
1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, ...
1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, ...
1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, ...
1, 2, 3, 1, 1, 6, 1, 1, 1, 2, 1, 3, ...
1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, ...
...
The unitary divisors of 3 are 1 and 3, those of 6 are 1,2,3,6; so T(6,3) = T(3,6) = 3.
		

References

  • M. Lal, H. Wareham and R. Mifflin, Iterates of the bi-unitary totient function, Utilitas Math., 10 (1976), 347-350.

Crossrefs

See A034444, A077610 for unitary divisors of n.
Different from A059895.

Programs

  • Maple
    # returns the greatest common unitary divisor of m and n
    f:=proc(m,n)
    local i,ans;
    ans:=1;
    for i from 1 to min(m,n) do
    if ((m mod i) = 0) and (igcd(i,m/i) = 1)  then
       if ((n mod i) = 0) and (igcd(i,n/i) = 1)  then ans:=i; fi;
    fi;
    od;
    ans; end;
  • Mathematica
    f[m_, n_] := Module[{i, ans=1}, For[i=1, i<=Min[m, n], i++, If[Mod[m, i]==0 && GCD[i, m/i]==1, If[Mod[n, i]==0 && GCD[i, n/i]==1, ans=i]]]; ans];
    Table[f[m-n+1, n], {m, 1, 14}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 19 2018, translated from Maple *)
  • PARI
    up_to = 20100; \\ = binomial(200+1,2)
    A225174sq(m,n) = { my(a=min(m,n),b=max(m,n),md=0); fordiv(a,d,if(0==(b%d)&&1==gcd(d,a/d)&&1==gcd(d,b/d),md=d)); (md); };
    A225174list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, if(i++ > up_to, return(v)); v[i] = A225174sq((a-(col-1)),col))); (v); };
    v225174 = A225174list(up_to);
    A225174(n) = v225174[n]; \\ Antti Karttunen, Nov 28 2018

Formula

T(m,n) = T(n,m) = A165430(n,m).

A366536 The number of unitary divisors of the cubefree numbers (A004709).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 2, 8, 2, 4, 4, 4, 4, 2, 4, 4, 2, 8, 2, 4, 4, 4, 2, 2, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 8, 2, 4, 4, 8, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 8, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Comments

The number of unitary divisors of the squarefree numbers (A005117) is the same as the number of divisors of the squarefree numbers (A072048), because all the divisors of a squarefree number are unitary.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(2^(#e), ", ")));
    
  • Python
    from sympy.ntheory.factor_ import udivisor_count
    from sympy import mobius, integer_nthroot
    def A366536(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return udivisor_count(m) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = A034444(A004709(n)).

A366537 The sum of unitary divisors of the cubefree numbers (A004709).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 10, 18, 12, 20, 14, 24, 24, 18, 30, 20, 30, 32, 36, 24, 26, 42, 40, 30, 72, 32, 48, 54, 48, 50, 38, 60, 56, 42, 96, 44, 60, 60, 72, 48, 50, 78, 72, 70, 54, 72, 80, 90, 60, 120, 62, 96, 80, 84, 144, 68, 90, 96, 144, 72, 74, 114, 104, 100, 96
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, # < 3 &], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));
    
  • Python
    from sympy.ntheory.factor_ import udivisor_sigma
    from sympy import mobius, integer_nthroot
    def A366537(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return udivisor_sigma(m) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = A034448(A004709(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(3)^2 * Product_{p prime} (1 + 1/p^2 - 2/p^3 + 1/p^4 - 1/p^5) = 1.665430860774244601005... .
The asymptotic mean of the unitary abundancy index of the cubefree numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A004709(k) = c / zeta(3) = 1.38548421160152785073... .
Previous Showing 31-40 of 113 results. Next