cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A151575 G.f.: (1+x)/(1+x-2*x^2).

Original entry on oeis.org

1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342, -682, 1366, -2730, 5462, -10922, 21846, -43690, 87382, -174762, 349526, -699050, 1398102, -2796202, 5592406, -11184810, 22369622, -44739242, 89478486, -178956970, 357913942, -715827882, 1431655766, -2863311530, 5726623062
Offset: 0

Views

Author

N. J. A. Sloane, May 25 2009, based on a suggestion from Gary W. Adamson

Keywords

Comments

Or, g.f. = (1+x)/((1-x)*(1-2*x)).
A signed version of A078008, which is the main entry.
[1, 0, 2, -2, 6, -10, 22, -42, 86, ...] = an operator for toothpick sequences. The sequence convolved with A151548 = toothpick sequence A139250. The sequence convolved with A151555 = toothpick sequence A153006. - Gary W. Adamson, May 25 2009

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x)/(1+x-2x^2),{x,0,40}],x] (* or *) LinearRecurrence[{-1,2},{1,0},40] (* Harvey P. Dale, May 31 2023 *)

Formula

From R. J. Mathar, Jul 08 2009: (Start)
a(n) = (2 + (-2)^n)/3 = (-1)^n*A078008(n), n>=0.
a(n) = 2*A077925(n-2), n>1. (End)
a(n) = A084247(n+1)/2. - Philippe Deléham, Sep 21 2009
G.f.: 1 + x - x*Q(0), where Q(k) = 1 + 2*x^2 - (2*k+3)*x + x*(2*k+1 - 2*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013

A232599 Alternating sum of cubes, i.e., Sum_{k=0..n} k^p*q^k for p=3, q=-1.

Original entry on oeis.org

0, -1, 7, -20, 44, -81, 135, -208, 304, -425, 575, -756, 972, -1225, 1519, -1856, 2240, -2673, 3159, -3700, 4300, -4961, 5687, -6480, 7344, -8281, 9295, -10388, 11564, -12825, 14175, -15616, 17152, -18785, 20519
Offset: 0

Views

Author

Stanislav Sykora, Nov 26 2013

Keywords

Examples

			a(3) = 0^3 - 1^3 + 2^3 - 3^3 = -20.
		

Crossrefs

Cf. A000578 (cubes), A011934 (absolute values), A059841 (p=0,q=-1), A130472 (p=1,q=-1), A089594 (p=2,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), A036827 (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232601 (p=2,q=-2), A232602 (p=3,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2).

Programs

  • Magma
    [(1 - (-1)^n*(1 -6*n^2 -4*n^3))/8: n in [0..30]]; // G. C. Greubel, Mar 31 2021
    
  • Maple
    A232599:= n-> (1 -(-1)^n*(1 -6*n^2 -4*n^3))/8; seq(A232599(n), n=0..30); # G. C. Greubel, Mar 31 2021
  • Mathematica
    Accumulate[Times@@@Partition[Riffle[Range[0,40]^3,{1,-1},{2,-1,2}],2]] (* Harvey P. Dale, Jul 22 2016 *)
  • PARI
    S3M1(n)=((-1)^n*(4*n^3+6*n^2-1)+1)/8;
    v = vector(10001);for(k=1,#v,v[k]=S3M1(k-1))
    
  • Sage
    [(1 - (-1)^n*(1 -6*n^2 -4*n^3))/8 for n in (0..30)] # G. C. Greubel, Mar 31 2021

Formula

a(n) = ((-1)^n*(4*n^3+6*n^2-1) +1)/8.
G.f.: (-x)*(1-4*x+x^2) / ( (1-x)*(1+x)^4 ). - R. J. Mathar, Nov 23 2014
E.g.f.: (exp(x) - (1 +10*x -18*x^2 +4*x^3)*exp(-x))/8. - G. C. Greubel, Mar 31 2021
a(n) = - 3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5). - Wesley Ivan Hurt, Mar 31 2021

A014986 a(n) = (1 - (-5)^n)/6.

Original entry on oeis.org

1, -4, 21, -104, 521, -2604, 13021, -65104, 325521, -1627604, 8138021, -40690104, 203450521, -1017252604, 5086263021, -25431315104, 127156575521, -635782877604, 3178914388021, -15894571940104, 79472859700521
Offset: 1

Views

Author

Keywords

Comments

q-integers for q = -5.
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 27 2010

Crossrefs

Programs

  • Magma
    I:=[1, -4]; [n le 2 select I[n] else -4*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 19 2012
  • Maple
    a:=n->sum ((-5)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    LinearRecurrence[{-4,5},{1,-4},30] (* Vincenzo Librandi, Jun 19 2012 *)
  • PARI
    a(n)=(1-(-5)^n)/6 \\ Charles R Greathouse IV, Dec 07 2011
    
  • Sage
    [gaussian_binomial(n,1,-5) for n in range(1,22)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).
G.f.: x/((1-x)*(1+5*x)). - Bruno Berselli, Dec 07 2011
a(n) = -4*a(n-1) + 5*a(n-2). - Vincenzo Librandi, Jun 19 2012
E.g.f.: (exp(x) - exp(-5*x))/6. - G. C. Greubel, May 26 2018

Extensions

Better name from Ralf Stephan, Jul 14 2013

A014989 a(n) = (1 - (-7)^n)/8.

Original entry on oeis.org

1, -6, 43, -300, 2101, -14706, 102943, -720600, 5044201, -35309406, 247165843, -1730160900, 12111126301, -84777884106, 593445188743, -4154116321200, 29078814248401, -203551699738806, 1424861898171643, -9974033287201500
Offset: 1

Views

Author

Keywords

Comments

q-integers for q = -7.

Crossrefs

Programs

  • Magma
    I:=[1,-6]; [n le 2 select I[n] else -6*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
    
  • Maple
    a:=n->sum ((-7)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    LinearRecurrence[{-6, 7}, {1, -6}, 30] (* Vincenzo Librandi, Oct 22 2012 *)
  • PARI
    x='x+O('x^30); Vec(x/((1-x)*(1+7*x))) \\ G. C. Greubel, May 26 2018
  • Sage
    [gaussian_binomial(n,1,-7) for n in range(1,21)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).
a(n) = -6*a(n-1) + 7*a(n-2). - Vincenzo Librandi, Oct 22 2012
From G. C. Greubel, May 26 2018: (Start)
G.f.: x/((1-x)*(1+7*x)).
E.g.f.: (exp(x) - exp(-7*x))/8. (End)

Extensions

Better name from Ralf Stephan, Jul 14 2013

A014994 a(n) = (1 - (-12)^n)/13.

Original entry on oeis.org

1, -11, 133, -1595, 19141, -229691, 2756293, -33075515, 396906181, -4762874171, 57154490053, -685853880635, 8230246567621, -98762958811451, 1185155505737413, -14221866068848955, 170662392826187461
Offset: 1

Views

Author

Keywords

Comments

q-integers for q=-12.

Crossrefs

Programs

  • Magma
    I:=[1,-11]; [n le 2 select I[n] else -11*Self(n-1)+12*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
    
  • Maple
    a:=n->sum ((-12)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    LinearRecurrence[{-11, 12}, {1, -11}, 30] (* Vincenzo Librandi, Oct 22 2012 *)
  • PARI
    a(n)=(1-(-12)^n)/13 \\ Charles R Greathouse IV, Sep 24 2015
  • Sage
    [gaussian_binomial(n,1,-12) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^(n-1) = (q^n - 1) / (q - 1).
G.f.: x/((1 - x)*(1 + 12*x)). - Vincenzo Librandi, Oct 22 2012
a(n) = -11*a(n-1) + 12*a(n-2). - Vincenzo Librandi, Oct 22 2012
E.g.f.: (exp(x) - exp(-12*x))/13. - G. C. Greubel, May 26 2018

Extensions

Better name from Ralf Stephan, Jul 14 2013

A089594 Alternating sum of squares to n.

Original entry on oeis.org

-1, 3, -6, 10, -15, 21, -28, 36, -45, 55, -66, 78, -91, 105, -120, 136, -153, 171, -190, 210, -231, 253, -276, 300, -325, 351, -378, 406, -435, 465, -496, 528, -561, 595, -630, 666, -703, 741, -780, 820, -861, 903, -946, 990, -1035, 1081, -1128, 1176, -1225, 1275
Offset: 1

Views

Author

Jon Perry, Dec 30 2003

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 2, A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=3, a(n-1)=(-1)^(n-1)*coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jan 24 2010
Also triangular numbers with alternating signs. - Stanislav Sykora, Nov 26 2013

Examples

			a(6) = 1 + 4 - 9 + 16 - 25 + 36 = 3 + 7 + 11 = 21.
		

Crossrefs

Cf. A059841 (p=0,q=-1), A130472 (p=1,q=-1), this sequence (p=2,q=-1), A232599 (p=3,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), A036827 (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232601 (p=2,q=-2), A232602 (p=3,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2).
Cf. A000217.
Cf. A225144. [Bruno Berselli, Jun 06 2013]

Programs

Formula

From R. J. Mathar, Nov 05 2011: (Start)
a(n) = Sum_{i=1..n} (-1)^i*i^2 = (-1)^n*n*(n+1)/2.
G.f.: -x / (1+x)^3. (End)
a(n) = (-1)^n*det(binomial(i+2,j+1), 1 <= i,j <= n-1). - Mircea Merca, Apr 06 2013
G.f.: -W(0)/(2+2*x), where W(k) = 1 + 1/( 1 - x*(k+2)/( x*(k+2) - (k+1)/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
E.g.f.: (1/2)*x*(x-2)*exp(-x). - G. C. Greubel, Mar 31 2021
Sum_{n>=1} 1/a(n) = 2 - 4*log(2). - Amiram Eldar, Jan 31 2023

A232600 a(n) = Sum_{k=0..n} k^p*q^k, where p=1, q=-2.

Original entry on oeis.org

0, -2, 6, -18, 46, -114, 270, -626, 1422, -3186, 7054, -15474, 33678, -72818, 156558, -334962, 713614, -1514610, 3203982, -6757490, 14214030, -29826162, 62448526, -130489458, 272163726, -566697074, 1178133390, -2445745266, 5070447502, -10498808946, 21713445774
Offset: 0

Views

Author

Stanislav Sykora, Nov 27 2013

Keywords

Examples

			a(3) = 0^1*2^0 - 1^1*2^1 + 2^1*2^2 - 3^1*2^3 = -18.
		

Crossrefs

Cf. A045883, A140960 (absolute values), A059841 (p=0, q=-1), A130472 (p=1 ,q=-1), A089594 (p=2, q=-1), A232599 (p=3, q=-1), A126646 (p=0, q=2), A036799 (p=1, q=2), A036800 (p=q=2), A036827 (p=3, q=2), A077925 (p=0, q=-2), A232601 (p=2, q=-2), A232602 (p=3, q=-2), A232603 (p=2, q=-1/2), A232604 (p=3, q=-1/2).
Cf. A045883.

Programs

  • Magma
    [2*((-2)^n*(3*n+1) -1)/9: n in [0..30]]; // G. C. Greubel, Mar 31 2021
    
  • Maple
    A232600:= n-> 2*((-2)^n*(3*n+1) -1)/9; seq(A232600(n), n=0..30); # G. C. Greubel, Mar 31 2021
  • Mathematica
    Table[2((3n+1)(-2)^n -1)/9, {n, 0, 30}] (* Bruno Berselli, Nov 28 2013 *)
  • PARI
    a(n)=-((3*n+1)*(-2)^(n+1)+2)/9;
    
  • Sage
    [2*((-2)^n*(3*n+1) -1)/9 for n in (0..30)] # G. C. Greubel, Mar 31 2021

Formula

a(n) = 2*( (3*n+1)*(-2)^n - 1 )/9.
abs(a(n)) = 2*A045883(n) = A140960(n).
From Bruno Berselli, Nov 28 2013: (Start)
G.f.: -2*x / ((1 - x)*(1 + 2*x)^2). [corrected by Georg Fischer, May 11 2019]
a(n) = -3*a(n-1) +4*a(n-3). (End)
From G. C. Greubel, Mar 31 2021: (Start)
E.g.f.: (2/9)*(-exp(x) + (1-6*x)*exp(-2*x)).
a(n) = 2*(-1)^n*A045883(n). (End)

A232601 a(n) = Sum_{k=0..n} k^p*q^k for p = 2 and q = -2.

Original entry on oeis.org

0, -2, 14, -58, 198, -602, 1702, -4570, 11814, -29658, 72742, -175066, 414758, -969690, 2241574, -5131226, 11645990, -26233818, 58700838, -130567130, 288863270, -635980762, 1394062374, -3043511258, 6620165158
Offset: 0

Views

Author

Stanislav Sykora, Nov 27 2013

Keywords

Examples

			a(3) = 0^2*2^0 - 1^2*2^1 + 2^2*2^2 - 3^2*2^3 = -58.
		

Crossrefs

Cf. A059841 (p=0,q=-1), A130472 (p=1,q=-1), A089594 (p=2,q=-1), A232599 (p=3,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), A036827 (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232602 (p=3,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2).

Programs

  • Magma
    [2*(1 - (-2)^n*(1-6*n-9*n^2))/27: n in [0..30]]; // G. C. Greubel, Mar 31 2021
    
  • Maple
    A232601:= n-> 2*(1 - (-2)^n*(1-6*n-9*n^2))/27; seq(A232601(n), n=0..30); # G. C. Greubel, Mar 31 2021
  • Mathematica
    LinearRecurrence[{-5,-6,4,8},{0,-2,14,-58},30] (* Harvey P. Dale, Aug 20 2015 *)
  • PARI
    S2M2(n)=((-1)^n*2^(n+1)*(9*n^2+6*n-1)+2)/27;
    v = vector(10001); for(k=1, #v, v[k]=S2M2(k-1))
    
  • Sage
    [2*(1 - (-2)^n*(1-6*n-9*n^2))/27 for n in (0..30)] # G. C. Greubel, Mar 31 2021

Formula

a(n) = 2*((-2)^n * (9*n^2 + 6*n - 1) + 1)/27.
G.f.: 2*x*(-1 + 2*x) / ((1-x)*(1+2*x)^3). - R. J. Mathar, Nov 23 2014
E.g.f.: (2/27)*(exp(x) - (1 +30*x -36*x^2)*exp(-2*x)). - G. C. Greubel, Mar 31 2021
a(n) = - 5*a(n-1) - 6*a(n-2) + 4*a(n-3) + 8*a(n-4). - Wesley Ivan Hurt, Mar 31 2021

A232602 a(n) = Sum_{k=0..n} k^p*q^k, where p=3, q=-2.

Original entry on oeis.org

0, -2, 30, -186, 838, -3162, 10662, -33242, 97830, -275418, 748582, -1977306, 5100582, -12897242, 32060454, -78531546, 189903910, -454052826, 1074770982, -2521320410, 5867287590, -13554437082
Offset: 0

Views

Author

Stanislav Sykora, Nov 27 2013

Keywords

Examples

			a(3) = 0^3*2^0 - 1^3*2^1 + 2^3*2^2 - 3^3*2^3 = -186.
		

Crossrefs

Cf. A059841 (p=0,q=-1), A130472 (p=1,q=-1), A089594 (p=2,q=-1), A232599 (p=3,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), A036827 (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232601 (p=2,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2).

Programs

  • Magma
    [2*(1 -(-2)^n*(1 +3*n -9*n^2 -9*n^3))/27: n in [0..35]]; // G. C. Greubel, Mar 31 2021
    
  • Maple
    A232602:= n-> 2*(1 -(-2)^n*(1 +3*n -9*n^2 -9*n^3))/27; seq(A232602(n), n=0..35); # G. C. Greubel, Mar 31 2021
  • Mathematica
    LinearRecurrence[{-7,-16,-8,16,16}, {0,-2,30,-186,838}, 40] (* G. C. Greubel, Mar 31 2021 *)
  • PARI
    a(n)=((-1)^n*2^(n+1)*(27*n^3+27*n^2-9*n-3)+6)/81;
    
  • Sage
    [2*(1 -(-2)^n*(1 +3*n -9*n^2 -9*n^3))/27 for n in (0..35)] # G. C. Greubel, Mar 31 2021

Formula

a(n) = 2*(1 - (-2)^n*(1 +3*n -9*n^2 -9*n^3))/27.
G.f.: -2*x*(1-8*x+4*x^2) / ( (1-x)*(1+2*x)^4 ). - R. J. Mathar, Nov 23 2014
E.g.f.: (2/27)*(exp(x) - (1 +30*x -144*x^2 +72*x^3)*exp(-2*x)). - G. C. Greubel, Mar 31 2021
a(n) = - 7*a(n-1) - 16*a(n-2) - 8*a(n-3) + 16*a(n-4) + 16*a(n-5). - Wesley Ivan Hurt, Mar 31 2021

A014990 a(n) = (1 - (-8)^n)/9.

Original entry on oeis.org

1, -7, 57, -455, 3641, -29127, 233017, -1864135, 14913081, -119304647, 954437177, -7635497415, 61083979321, -488671834567, 3909374676537, -31274997412295, 250199979298361, -2001599834386887, 16012798675095097
Offset: 1

Views

Author

Keywords

Comments

q-integers for q=-8.

Crossrefs

Programs

  • Magma
    I:=[1, -7]; [n le 2 select I[n] else -7*Self(n-1) +8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 22 2012
    
  • Maple
    a:=n->sum ((-8)^j, j=0..n): seq(a(n), n=0..25); # Zerinvary Lajos, Dec 16 2008
  • Mathematica
    QBinomial[Range[20],1,-8] (* or *) LinearRecurrence[{-7,8},{1,-7},20] (* Harvey P. Dale, Dec 19 2011 *)
  • PARI
    a(n)=(1-(-8)^n)/9 \\ Charles R Greathouse IV, Oct 07 2015
  • Sage
    [gaussian_binomial(n,1,-8) for n in range(1,20)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = a(n-1) + q^{(n-1)} = {(q^n - 1) / (q - 1)}
From Philippe Deléham, Feb 13 2007: (Start)
a(1)=1, a(2)=-7, a(n) = -7*a(n-1) + 8*a(n-2) for n > 2.
a(n) = (-1)^(n+1)*A015565(n).
G.f.: x/(1 + 7*x - 8*x^2). (End)
E.g.f.: (exp(x) - exp(-8*x))/9. - G. C. Greubel, May 26 2018

Extensions

Better name from Ralf Stephan, Jul 14 2013
Previous Showing 11-20 of 50 results. Next