cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 50 results. Next

A175722 a(n) = -a(n-1) + a(n-2) - F(-n) + 1, a(0) = 1, a(1) = -1, where F() = Fibonacci numbers A000045.

Original entry on oeis.org

1, -1, 4, -6, 14, -24, 47, -83, 152, -268, 476, -832, 1453, -2517, 4348, -7474, 12810, -21880, 37275, -63335, 107376, -181656, 306744, -517056, 870169, -1462249, 2453812, -4112478, 6884102, -11510808, 19226951, -32084027, 53489288, -89097892, 148290068
Offset: 0

Views

Author

Roger L. Bagula, Dec 04 2010

Keywords

Examples

			G.f. = 1 - x + 4*x^2 - 6*x^3 + 14*x^4 - 24*x^5 + 47*x^6 - 83*x^7 + 152*x^8 + ...
		

Crossrefs

Cf. m=1: A077899, m large: A077925.

Programs

  • GAP
    List([0..40], n-> 1 + (-1)^n*(n*Lucas(1,-1,n+1)[2] + 7*Fibonacci(n))/5 ); # G. C. Greubel, Dec 04 2019
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1+x-x^2)^2))); // G. C. Greubel, Aug 14 2018
    
  • Maple
    with(combinat); seq( 1 + (-1)^n*(n*fibonacci(n+2) + (n+7)*fibonacci(n))/5, n=0..40); # G. C. Greubel, Dec 04 2019
  • Mathematica
    f[x_, m_] = ExpandAll[(x -x^(m+1))*(1-x-x^2) -(1 -2*x +x^(m+1))];
    g[x_, n_] = ExpandAll[x^(m + 3)*f[1/x, m]];
    a = Table[Table[SeriesCoefficient[Series[1/g[x, m], {x, 0, 20}], n], {n, 0, 20}], {m, 1, 20}]
    CoefficientList[Series[1/((1-x)(1+x-x^2)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 13 2014 *)
    RecurrenceTable[{a[0]==1,a[1]==-1,a[n]==-a[n-1]+a[n-2]-Fibonacci[-n]+1},a,{n,40}] (* Harvey P. Dale, May 12 2018 *)
    Table[1 + (-1)^n*(n*LucasL[n+1] + 7*Fibonacci[n])/5, {n,0,40}] (* G. C. Greubel, Dec 04 2019 *)
  • PARI
    {a(n) = if( n<0, polcoeff( x^5 / ((1 - x) * (1 - x - x^2)^2) + x * O(x^-n), -n), polcoeff( 1 / ((1 - x) * (1 + x - x^2)^2) + x * O(x^n), n))}; /* Michael Somos, Mar 11 2014 */
    
  • PARI
    vector(41, n, my(f=fibonacci); 1 -(-1)^n*((n-1)*f(n+1) +(n+6)*f(n-1))/5 ) \\ G. C. Greubel, Dec 04 2019
    
  • Sage
    [1 + (-1)^n*(n*lucas_number2(n+1, 1,-1) + 7*fibonacci(n))/5 for n in (0..40)] # G. C. Greubel, Dec 04 2019
    

Formula

G.f.: 1/(- x^m + 1 - x^(1 + m) + x + 3*x^(2 + m) - 2*x^2 - x^(3 + m)) for m=2.
G.f.: 1 / ((1 - x) * (1 + x - x^2)^2). - Michael Somos, Mar 11 2014
a(n) = A006478(-2-n) for all n in Z. - Michael Somos, Mar 11 2014
a(n) = 1 + (-1)^n*(n*Lucas(n+1) + 7*Fibonacci(n))/5. - G. C. Greubel, Dec 04 2019
E.g.f.: exp(-x/2)*(25*exp(3*x/2) - 15*x*cosh(sqrt(5)*x/2) + sqrt(5)*(5*x - 14)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Jul 24 2022

A283642 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 678", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531, 5726623061, 11453246123
Offset: 0

Views

Author

Robert Price, Mar 12 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.
Similar to A001045.
It is not difficult to prove that one has indeed a(n) = round(4*2^n/3) = A001045(n+2) for all n. The proof as well as the growth of the pattern is nearly identical to that of the toothpick sequence A139250. - M. F. Hasler, Feb 13 2020
The decimal representations of the n-th interval of elementary cellular automata rules 28 and 156 (see A266502 and A266508) generate this sequence. - Karl V. Keller, Jr., Sep 03 2021

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 678; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i ,1, stages - 1}]
  • Python
    print([(4*2**n + 1)//3 for n in range(50)]) # Karl V. Keller, Jr., Sep 03 2021

Formula

From Colin Barker, Mar 14 2017: (Start)
G.f.: (1 + 2*x) / ((1 + x)*(1 - 2*x)).
a(n) = (2^(n+2) - 1) / 3 for n even.
a(n) = (2^(n+2) + 1) / 3 for n odd.
a(n) = a(n-1) + 2*a(n-2) for n>1.
(End)
I.e., a(n) = A001045(n+2) = A154917(n+2) = A167167(n+2) = |A077925(n+1)| = A328284(n+5) = round(4*2^n/3), cf. comments. - M. F. Hasler, Feb 13 2020
E.g.f.: (4*exp(2*x) - exp(-x))/3. - Stefano Spezia, Feb 13 2020
a(n) = floor((4*2^n + 1)/3). - Karl V. Keller, Jr., Sep 03 2021

A305098 Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, -1, 1, 2, -1, -4, 1, 6, 4, -1, -8, -12, 1, 10, 24, 8, -1, -12, -40, -32, 1, 14, 60, 80, 16, -1, -16, -84, -160, -80, 1, 18, 112, 280, 240, 32, -1, -20, -144, -448, -560, -192, 1, 22, 180, 672, 1120, 672, 64, -1, -24, -220, -960, -2016, -1792, -448
Offset: 0

Views

Author

Shara Lalo, May 25 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A303872 ((-1+2*x)^n).
The coefficients in the expansion of 1/(1+x-2x^2) are given by the sequence generated by the row sums.
When n is even the numbers in the row are positive, and when n is odd the numbers in the row are negative.

Examples

			Triangle begins:
   1;
  -1;
   1,   2;
  -1,  -4;
   1,   6,    4;
  -1,  -8,  -12;
   1,  10,   24,     8;
  -1, -12,  -40,   -32;
   1,  14,   60,    80,     16;
  -1, -16,  -84,  -160,    -80;
   1,  18,  112,   280,    240,     32;
  -1, -20, -144,  -448,   -560,   -192;
   1,  22,  180,   672,   1120,    672,     64;
  -1, -24, -220,  -960,  -2016,  -1792,   -448;
   1,  26,  264,  1320,   3360,   4032,   1792,    128;
  -1, -28, -312, -1760,  -5280,  -8064,  -5376,  -1024;
   1,  30,  364,  2288,   7920,  14784,  13440,   4608,   256;
  -1, -32, -420, -2912, -11440, -25344, -29568, -15360, -2304;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391.

Crossrefs

Signed version of A128099.
Row sums give A077925.
Cf. A303872, A033999 (column 0).

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, -t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018

Formula

G.f.: 1 / (1 + t*x - 2t^2).

A345034 a(n) = Sum_{k=1..n} (-2)^(floor(n/k) - 1).

Original entry on oeis.org

1, -1, 6, -8, 17, -27, 70, -136, 255, -491, 1046, -2082, 4063, -8131, 16476, -32882, 65423, -130845, 262372, -524818, 1048149, -2096045, 4195412, -8390820, 16775029, -33550477, 67113210, -134225588, 268427597, -536854983, 1073757754, -2147517076
Offset: 1

Views

Author

Seiichi Manyama, Jun 06 2021

Keywords

Crossrefs

Column k=2 of A345033.

Programs

  • Mathematica
    a[n_] := Sum[(-2)^(Floor[n/k] - 1), {k, 1, n}]; Array[a, 30] (* Amiram Eldar, Jun 06 2021 *)
  • PARI
    a(n) = sum(k=1, n, (-2)^(n\k-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1+2*x^k))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} x^k * (1 - x^k)/(1 + 2*x^k).

A209998 Triangle of coefficients of polynomials v(n,x) jointly generated with A209996; see the Formula section.

Original entry on oeis.org

1, 2, 3, 2, 8, 9, 2, 10, 30, 27, 2, 10, 46, 108, 81, 2, 10, 50, 198, 378, 243, 2, 10, 50, 242, 810, 1296, 729, 2, 10, 50, 250, 1122, 3186, 4374, 2187, 2, 10, 50, 250, 1234, 4986, 12150, 14580, 6561, 2, 10, 50, 250, 1250, 5946, 21330, 45198, 48114, 19683
Offset: 1

Views

Author

Clark Kimberling, Mar 23 2012

Keywords

Comments

Row n starts 2, 2*5, 2*5^2,... ; ends with 3^(n-1).
Conjecture: penultimate term in row n is A199923(n).
Alternating row sums: A077925
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2...3
2...8....9
2...10...30...27
2...10...46...108...81
First three polynomials v(n,x): 1, 2 + 3x , 2 + 8x + 9x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209996 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209998 *)

Formula

u(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

Extensions

a(55) corrected by Georg Fischer, Sep 03 2021

A210747 Triangle of coefficients of polynomials u(n,x) jointly generated with A210748; see the Formula section.

Original entry on oeis.org

1, 2, 3, 4, 9, 8, 7, 24, 33, 21, 12, 54, 109, 111, 55, 20, 114, 297, 435, 355, 144, 33, 228, 736, 1383, 1606, 1098, 377, 54, 441, 1697, 3912, 5813, 5625, 3316, 987, 88, 831, 3723, 10158, 18419, 22779, 18962, 9837, 2584, 143, 1536, 7859, 24798
Offset: 1

Views

Author

Clark Kimberling, Mar 25 2012

Keywords

Comments

Row n starts with -1+F(n+2) and ends with F(2n), where F=A000045 (Fibonacci numbers).
Row sums: A002450
Alternating row sums: A077925
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2....3
4....9....8
7....24...33....21
12...54...109...111...55
First three polynomials u(n,x): 1, 2+ 3x, 4 + 9x + 8x^2.
		

Crossrefs

Cf. A208510.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210747 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210748 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A002450 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A002450 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* A077925 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000012 *)

Formula

u(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A210748 Triangle of coefficients of polynomials v(n,x) jointly generated with A210747; see the Formula section.

Original entry on oeis.org

1, 3, 2, 6, 10, 5, 11, 29, 32, 13, 19, 71, 118, 99, 34, 32, 156, 352, 437, 299, 89, 53, 322, 919, 1521, 1526, 887, 233, 87, 636, 2205, 4559, 6036, 5117, 2595, 610, 142, 1218, 4979, 12373, 20320, 22591, 16653, 7508, 1597, 231, 2279, 10751, 31233
Offset: 1

Views

Author

Clark Kimberling, Mar 25 2012

Keywords

Comments

Row n starts with -2+F(n+3) and ends with F(2n-1), where F=A000045 (Fibonacci numbers).
Row sums: A002450
Alternating row sums: 1,1,1,1,1,1,1,1,1,...(A000012)
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
3....2
6....10...5
11...29...32....13
19...71...118...99...34
First three polynomials v(n,x): 1, 3 + 2x, 6 + 10x +5x^2
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A210747 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210748 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A002450 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A002450 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* A077925 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000012 *)

Formula

u(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A210793 Triangle of coefficients of polynomials u(n,x) jointly generated with A210794; see the Formula section.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 6, 10, 8, 3, 9, 24, 27, 16, 5, 18, 51, 74, 62, 30, 8, 27, 108, 189, 200, 136, 56, 13, 54, 216, 450, 574, 488, 282, 102, 21, 81, 432, 1026, 1536, 1571, 1128, 569, 184, 34, 162, 837, 2268, 3864, 4598, 3967, 2486, 1118, 328, 55, 243, 1620
Offset: 1

Views

Author

Clark Kimberling, Mar 26 2012

Keywords

Comments

Row n starts with A038754(n) and ends with F(n), where F=A000045 (Fibonacci numbers).
Row sums: A000244 (powers of 3).
Alternating row sums: A000012 (1,1,1,1,1,1,1,1,1,1,1,...).
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 29 2012

Examples

			First five rows:
  1;
  2,  1;
  3,  4,  2;
  6, 10,  8,  3;
  9, 24, 27, 16,  5;
First three polynomials u(n,x):
  1
  2 + x
  3 + 4x + 2x^2.
From _Philippe Deléham_, Mar 29 2012: (Start)
(1, 1, -1, -1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins:
   1;
   1,  0;
   2,  1,  0;
   3,  4,  2,  0;
   6, 10,  8,  3,  0;
   9, 24, 27, 16,  5,  0;
  18, 51, 74, 62, 30,  8,  0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
    d[x_] := h + x; e[x_] := p + x;
    v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
    j = 1; c = 0; h = 2; p = -1; f = 0;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A210793 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210794 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]   (* A000244 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]   (* A000244 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}]  (* A000012 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}]  (* A077925 *)

Formula

u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = (x+2)*u(n-1,x) + (x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 29 2012: (Start)
As DELTA(triangle T(n,k) with 0 <= k <= n:
G.f.: (1 + x - y*x^2 - 2*y*x^2 - y^2*x^2)/(1 - y*x - 3*x^2 - 2*y*x^2 - y^2*x^2).
T(n,k) = T(n-1,k-1) + 3*T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k <= n. (End)

A210794 Triangle of coefficients of polynomials v(n,x) jointly generated with A210793; see the Formula section.

Original entry on oeis.org

1, 1, 2, 3, 3, 3, 3, 11, 8, 5, 9, 18, 29, 17, 8, 9, 48, 67, 71, 35, 13, 27, 81, 180, 194, 158, 68, 21, 27, 189, 387, 575, 508, 338, 129, 34, 81, 324, 918, 1410, 1617, 1222, 695, 239, 55, 81, 702, 1890, 3606, 4471, 4222, 2793, 1393, 436, 89, 243, 1215
Offset: 1

Views

Author

Clark Kimberling, Mar 26 2012

Keywords

Comments

Row n starts with a power of 3 and ends with F(n+1), where F=A000045 (Fibonacci numbers).
Row sums: A000244 (powers of 3)
Alternating row sums: A077925
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...2
3...3....3
3...11...8....5
9...18...29...17...8
First three polynomials v(n,x): 1, 1 + 2x, 3 + 3x + 3x^2
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
    d[x_] := h + x; e[x_] := p + x;
    v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
    j = 1; c = 0; h = 2; p = -1; f = 0;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A210793 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210794 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A000244 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A000244 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000012 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* A077925 *)

Formula

u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k-1) + 3*T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 29 2012

A210870 Triangle of coefficients of polynomials u(n,x) jointly generated with A210871; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 3, 3, 1, 4, 6, 5, 5, 1, 5, 8, 12, 8, 8, 1, 6, 12, 17, 23, 13, 13, 1, 7, 15, 29, 33, 43, 21, 21, 1, 8, 20, 38, 64, 63, 79, 34, 34, 1, 9, 24, 56, 86, 136, 117, 143, 55, 55, 1, 10, 30, 70, 140, 187, 279, 214, 256, 89, 89, 1, 11, 35, 95, 180, 332
Offset: 1

Views

Author

Clark Kimberling, Mar 29 2012

Keywords

Comments

In row n, for n>1, the first two terms are 1 and n-1, and the last two are F(n) and F(n), where F = A000045 (Fibonacci numbers).
Row sums: A000975
Alternating row sums: A113954
For a discussion and guide to related arrays, see A208510.

Examples

			First six rows:
1
1...1
1...2...2
1...3...3...3
1...4...6...5....5
1...5...8...12...8...8
First three polynomials u(n,x): 1, 1 + x, 1 + 2x + 2x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 14;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x - 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210870 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210871 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A000975 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A001045 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}]   (* A113954 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}]  (* A077925 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x-1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Previous Showing 31-40 of 50 results. Next