cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A026007 Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 28, 49, 83, 142, 235, 385, 627, 1004, 1599, 2521, 3940, 6111, 9421, 14409, 21916, 33134, 49808, 74484, 110837, 164132, 241960, 355169, 519158, 755894, 1096411, 1584519, 2281926, 3275276, 4685731, 6682699, 9501979, 13471239, 19044780, 26850921, 37756561, 52955699
Offset: 0

Views

Author

Keywords

Comments

In general, for t > 0, if g.f. = Product_{m>=1} (1 + t*q^m)^m then a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (3^(2/3) * (t+1)^(1/12) * sqrt(2*Pi) * n^(2/3)), where c = Pi^2*log(t) + log(t)^3 - 6*polylog(3, -1/t). - Vaclav Kotesovec, Jan 04 2016

Examples

			For n = 4, we have 8 partitions
  01: [4]
  02: [4']
  03: [4'']
  04: [4''']
  05: [3, 1]
  06: [3', 1]
  07: [3'', 1]
  08: [2, 2']
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          add((-1)^(n/d+1)*d^2, d=divisors(n))
        end:
    a:= proc(n) option remember;
          `if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^2, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Apr 17 2014, after Vladeta Jovovic *)
    nmax=50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
  • PARI
    N=66; q='q+O('q^N);
    gf= prod(n=1,N, (1+q^n)^n );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */

Formula

a(n) = (1/n)*Sum_{k=1..n} A078306(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
G.f.: Product_{m>=1} (1+x^m)^m. Weighout transform of natural numbers (A000027). Euler transform of A026741. - Franklin T. Adams-Watters, Mar 16 2006
a(n) ~ zeta(3)^(1/6) * exp((3/2)^(4/3) * zeta(3)^(1/3) * n^(2/3)) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where zeta(3) = A002117. - Vaclav Kotesovec, Mar 05 2015

A255528 G.f.: Product_{k>=1} 1/(1+x^k)^k.

Original entry on oeis.org

1, -1, -1, -2, 1, 0, 4, 2, 8, -2, 4, -11, -1, -25, -5, -35, 13, -26, 49, -6, 110, 6, 159, -23, 182, -141, 129, -358, 62, -640, 39, -897, 237, -1013, 771, -914, 1793, -664, 3143, -565, 4635, -1157, 5727, -3119, 6121, -7041, 5642, -13088, 5097, -20758, 5879
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 24 2015

Keywords

Comments

In general, if m >= 1 and g.f. = Product_{k>=1} 1/(1 + x^k)^(m*k), then a(n, m) ~ (-1)^n * exp(-m/12 + 3 * 2^(-5/3) * m^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * 2^(m/18 - 5/6) * A^m * m^(1/6 - m/36) * Zeta(3)^(1/6 - m/36) * n^(m/36 - 2/3) / sqrt(3*Pi), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 13 2017

Crossrefs

Cf. A278710 (m=2), A279031 (m=3), A279411 (m=4), A279932 (m=5).

Programs

  • Maple
    with(numtheory): A000219:=proc(n) option remember; if n = 0 then 1 else add(sigma[2](k)*A000219(n-k), k = 1..n)/n fi: end: A073592:=proc(n) option remember; if n = 0 then 1 else -add(sigma[2](k)*A073592(n-k), k = 1..n)/n fi: end: a:=proc(n); add(A073592(n-2*m)*A000219(m), m = 0..floor(n/2)): end: seq(a(n), n = 0..50); # Vaclav Kotesovec, Mar 09 2015
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1+x^k)^k,{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    {a(n) = if(n<0, 0, polcoeff(exp(sum(k=1, n, (-1)^k * x^k / (1-x^k)^2 / k, x*O(x^n))), n))}
    for(n=0, 100, print1(a(n), ", "))

Formula

a(n) ~ (-1)^n * A * Zeta(3)^(5/36) * exp(3*Zeta(3)^(1/3)*n^(2/3)/2^(5/3) - 1/12) / (2^(7/9) * sqrt(3*Pi) * n^(23/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Sep 29 2015
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A078306(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 06 2017

A078307 a(n) = Sum_{d divides n} (-1)^(n/d+1)*d^3.

Original entry on oeis.org

1, 7, 28, 55, 126, 196, 344, 439, 757, 882, 1332, 1540, 2198, 2408, 3528, 3511, 4914, 5299, 6860, 6930, 9632, 9324, 12168, 12292, 15751, 15386, 20440, 18920, 24390, 24696, 29792, 28087, 37296, 34398, 43344, 41635, 50654, 48020, 61544, 55314, 68922, 67424
Offset: 1

Views

Author

Vladeta Jovovic, Nov 22 2002

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add((-1)^(n/d+1)*d^3, d=divisors(n)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[n_] := Sum[(-1)^(n/d+1)*d^3, {d, Divisors[n]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Jan 17 2014 *)
    f[p_, e_] := (p^(3*e + 3) - 1)/(p^3 - 1); f[2, e_] := (6*8^e + 1)/7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 42] (* Amiram Eldar, Oct 27 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^3); \\ Indranil Ghosh, Apr 05 2017
    
  • Python
    from sympy import divisors
    print([sum((-1)**(n//d + 1)*d**3 for d in divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Apr 05 2017

Formula

G.f.: Sum_{n >= 1} n^3*x^n/(1+x^n).
Multiplicative with a(2^e) = (6*8^e+1)/7, a(p^e) = (p^(3*e+3)-1)/(p^3-1), p > 2.
L.g.f.: log(Product_{k>=1} (1 + x^k)^(k^2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 12 2018
Sum_{k=1..n} a(k) ~ c * n^4, where c = 7*Pi^4/2880 = 0.236758... . - Amiram Eldar, Oct 27 2022

A284900 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^4.

Original entry on oeis.org

1, 15, 82, 239, 626, 1230, 2402, 3823, 6643, 9390, 14642, 19598, 28562, 36030, 51332, 61167, 83522, 99645, 130322, 149614, 196964, 219630, 279842, 313486, 391251, 428430, 538084, 574078, 707282, 769980, 923522, 978671, 1200644, 1252830, 1503652, 1587677
Offset: 1

Views

Author

Seiichi Manyama, Apr 05 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000583 and A062157 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} (-1)^(n/d+1)*d^k: A000593 (k=1), A078306 (k=2), A078307 (k=3), this sequence (k=4), A284926 (k=5), A284927 (k=6), A321552 (k=7), A321553 (k=8), A321554 (k=9), A321555 (k=10), A321556 (k=11), A321557 (k=12).

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1)*d^4, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 05 2017 *)
    f[p_, e_] := (p^(4*e + 4) - 1)/(p^4 - 1); f[2, e_] := (7*2^(4*e + 1) + 1)/15; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^4); \\ Indranil Ghosh, Apr 05 2017
    
  • Python
    from sympy import divisors
    print([sum([(-1)**(n//d + 1)*d**4 for d in divisors(n)]) for n in range(1, 51)]) # Indranil Ghosh, Apr 05 2017

Formula

G.f.: Sum_{k>=1} k^4*x^k/(1 + x^k). - Ilya Gutkovskiy, Apr 07 2017
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (7*2^(4*e+1)+1)/15, and a(p^e) = (p^(4*e+4) - 1)/(p^4 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^5, where c = 3*zeta(5)/16 = 0.194423... . (End)

A284926 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^5.

Original entry on oeis.org

1, 31, 244, 991, 3126, 7564, 16808, 31711, 59293, 96906, 161052, 241804, 371294, 521048, 762744, 1014751, 1419858, 1838083, 2476100, 3097866, 4101152, 4992612, 6436344, 7737484, 9768751, 11510114, 14408200, 16656728, 20511150, 23645064, 28629152, 32472031, 39296688
Offset: 1

Views

Author

Seiichi Manyama, Apr 06 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000584 and A062157 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} (-1)^(n/d+1)*d^k: A000593 (k=1), A078306 (k=2), A078307 (k=3), A284900 (k=4), this sequence (k=5), A284927 (k=6), A321552 (k=7), A321553 (k=8), A321554 (k=9), A321555 (k=10), A321556 (k=11), A321557 (k=12).

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1)*d^5, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 06 2017 *)
    f[p_, e_] := (p^(5*e + 5) - 1)/(p^5 - 1); f[2, e_] := (15*2^(5*e + 1) + 1)/31; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^5); \\ Indranil Ghosh, Apr 06 2017
    
  • Python
    from sympy import divisors
    print([sum((-1)**(n//d + 1)*d**5 for d in divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Apr 06 2017

Formula

G.f.: Sum_{k>=1} k^5*x^k/(1 + x^k). - Ilya Gutkovskiy, Apr 07 2017
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (15*2^(5*e+1)+1)/31, and a(p^e) = (p^(5*e+5) - 1)/(p^5 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^6, where c = 31*zeta(6)/192 = 0.164258... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A284927 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^6.

Original entry on oeis.org

1, 63, 730, 4031, 15626, 45990, 117650, 257983, 532171, 984438, 1771562, 2942630, 4826810, 7411950, 11406980, 16510911, 24137570, 33526773, 47045882, 62988406, 85884500, 111608406, 148035890, 188327590, 244156251, 304089030, 387952660, 474247150, 594823322
Offset: 1

Views

Author

Seiichi Manyama, Apr 06 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A001014 and A062157 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} (-1)^(n/d+1)*d^k: A000593 (k=1), A078306 (k=2), A078307 (k=3), A284900 (k=4), A284926 (k=5), this sequence (k=6), A321552 (k=7), A321553 (k=8), A321554 (k=9), A321555 (k=10), A321556 (k=11), A321557 (k=12).

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1)*d^6, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 06 2017 *)
    f[p_, e_] := (p^(6*e + 6) - 1)/(p^6 - 1); f[2, e_] := (31*2^(6*e + 1) + 1)/63; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^6); \\ Indranil Ghosh, Apr 06 2017
    
  • Python
    from sympy import divisors
    print([sum([(-1)**(n//d + 1)*d**6 for d in divisors(n)]) for n in range(1, 51)]) # Indranil Ghosh, Apr 06 2017

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1 + x^k). - Ilya Gutkovskiy, Apr 07 2017
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (31*2^(6*e+1)+1)/63, and a(p^e) = (p^(6*e+6) - 1)/(p^6 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = 9*zeta(7)/64 = 0.141799... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A321552 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^7.

Original entry on oeis.org

1, 127, 2188, 16255, 78126, 277876, 823544, 2080639, 4785157, 9922002, 19487172, 35565940, 62748518, 104590088, 170939688, 266321791, 410338674, 607714939, 893871740, 1269938130, 1801914272, 2474870844, 3404825448, 4552438132, 6103593751, 7969061786, 10465138360, 13386707720, 17249876310
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Sum_{k>=1} k^b*x^k/(1 + x^k): A000593 (b=1), A078306 (b=2), A078307 (b=3), A284900 (b=4), A284926 (b=5), A284927 (b=6), this sequence (b=7), A321553 (b=8), A321554 (b=9), A321555 (b=10), A321556 (b=11), A321557 (b=12).
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013666.

Programs

  • Mathematica
    f[p_, e_] := (p^(7*e + 7) - 1)/(p^7 - 1); f[2, e_] := (63*2^(7*e + 1) + 1)/127; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321552(n)=sumdiv(n, d, (-1)^(n\d-1)*d^7), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^7*x^k/(1 + x^k). - Seiichi Manyama, Nov 23 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (63*2^(7*e+1)+1)/127, and a(p^e) = (p^(7*e+7) - 1)/(p^7 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^8, where c = 127*zeta(8)/1024 = 0.124529... . (End)

A321558 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^2.

Original entry on oeis.org

1, -5, 10, -13, 26, -50, 50, -45, 91, -130, 122, -130, 170, -250, 260, -173, 290, -455, 362, -338, 500, -610, 530, -450, 651, -850, 820, -650, 842, -1300, 962, -685, 1220, -1450, 1300, -1183, 1370, -1810, 1700, -1170, 1682, -2500, 1850, -1586, 2366
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Examples

			G.f. = x - 5*x^2 + 10*x^3 - 13*x^4 + 26*x^5 - 50*x^6 + 50*x^7 + ... - _Michael Somos_, Oct 24 2019
		

Crossrefs

Column k=2 of A322083.
Cf. A321543 - A321557, A321810 - A321836 for similar sequences.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(-1)^(k+1)*k^2*x^k/(1 + x^k) : k in [1..2*m]]) )); // G. C. Greubel, Nov 28 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^2 &]; Array[a, 50] (* Amiram Eldar, Nov 27 2018 *)
  • PARI
    apply( A321558(n)=sumdiv(n, d, (-1)^(n\d-d)*d^2), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Sage
    s=(sum((-1)^(k+1)*k^2*x^k/(1 + x^k)  for k in (1..50))).series(x, 30); a = s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 28 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*k^2*x^k/(1 + x^k). - Ilya Gutkovskiy, Nov 27 2018
G.f.: Sum_{k>=1} (-1)^(k+1)*(x^k - x^(2*k))/(1 + x^k)^3. - Michael Somos, Oct 24 2019
a(n) = -(-1)^n A328667(n). a(2*n + 1) = A078306(2*n + 1). a(2*n) = A078306(2*n) - 8*A078306(n). - Michael Somos, Oct 24 2019
From Peter Bala, Jan 29 2022: (Start)
Multiplicative with a(2^k) = - (2^(2*k+1) + 7)/3 for k >= 1 and a(p^k) = (p^(2*k+2) - 1)/(p^2 - 1) for odd prime p.
n^2 = (-1)^(n+1)*Sum_{d divides n} A067856(n/d)*a(d). (End)

A322081 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} (-1)^(n/d+1)*d^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 3, 4, -1, 1, 7, 10, 1, 2, 1, 15, 28, 11, 6, 0, 1, 31, 82, 55, 26, 4, 2, 1, 63, 244, 239, 126, 30, 8, -2, 1, 127, 730, 991, 626, 196, 50, 1, 3, 1, 255, 2188, 4031, 3126, 1230, 344, 43, 13, 0, 1, 511, 6562, 16255, 15626, 7564, 2402, 439, 91, 6, 2, 1, 1023, 19684, 65279, 78126, 45990, 16808, 3823, 757, 78, 12, -2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,     1,     1,  ...
   0,  1,   3,    7,    15,    31,  ...
   2,  4,  10,   28,    82,   244,  ...
  -1,  1,  11,   55,   239,   991,  ...
   2,  6,  26,  126,   626,  3126,  ...
   0,  4,  30,  196,  1230,  7564,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Sum[(-1)^(n/d + 1) d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 + x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, (-1)^(n/d+1)*d^k)}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 + x^j).

A356391 a(n) = n! * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d + 1) * d^2 ) /k.

Original entry on oeis.org

1, 5, 35, 206, 1654, 13524, 130668, 1262064, 15027696, 178581600, 2407111200, 33276182400, 514020643200, 8130342124800, 144621487584000, 2537556118272000, 49206063078144000, 982811803276800000, 20991083543732736000, 454612169591580672000, 10763306565511514112000
Offset: 1

Views

Author

Seiichi Manyama, Aug 05 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Sum[(-1)^(k/d + 1)*d^2, {d, Divisors[k]}]/k, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Aug 07 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d^2)/k);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (-x)^k/(k*(1-x^k)^2))/(1-x)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, k*log(1+x^k))/(1-x)))

Formula

a(n) = n! * Sum_{k=1..n} A078306(k)/k.
E.g.f.: -(1/(1-x)) * Sum_{k>0} (-x)^k/(k * (1 - x^k)^2).
E.g.f.: (1/(1-x)) * Sum_{k>0} k * log(1 + x^k).
a(n) ~ n! * n^2 * 3 * zeta(3) / 8. - Vaclav Kotesovec, Aug 07 2022
Showing 1-10 of 15 results. Next