cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A114271 Numbers k such that k^2 + 8 is prime.

Original entry on oeis.org

3, 9, 15, 21, 33, 51, 57, 81, 87, 111, 117, 123, 129, 135, 141, 147, 153, 177, 189, 213, 219, 255, 279, 285, 315, 321, 327, 345, 351, 363, 399, 417, 465, 471, 477, 483, 495, 549, 579, 585, 627, 657, 663, 669, 723, 735, 741, 747, 759, 771, 783, 789, 807, 825
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), this sequence (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

A113536 Numbers k such that k^2 + 13 is prime.

Original entry on oeis.org

0, 2, 4, 10, 12, 16, 18, 28, 40, 42, 44, 46, 60, 68, 72, 82, 84, 88, 94, 108, 110, 114, 116, 122, 126, 142, 144, 152, 158, 180, 192, 194, 198, 200, 220, 222, 264, 266, 268, 282, 284, 296, 298, 332, 336, 340, 354, 378, 380, 418, 420, 430, 434, 446, 464, 466, 486
Offset: 1

Views

Author

Zak Seidov, Jan 13 2006

Keywords

Examples

			If n=40 then n^2 + 13 = 1613 (prime), so 40 is in the sequence.
		

Crossrefs

Other cases: A005574 k=1, A067201 k=2, A049422 k=3, A007591 k=4, A078402 k=5, A114269-A114275 k=6-12.

Programs

  • Mathematica
    With[{k=13}, Select[Range[1000], PrimeQ[ #^2+k]&]]
  • PARI
    is(n)=isprime(n^2+13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Edited by R. J. Mathar, Aug 07 2008

A117951 a(n) = n^2 + 5.

Original entry on oeis.org

5, 6, 9, 14, 21, 30, 41, 54, 69, 86, 105, 126, 149, 174, 201, 230, 261, 294, 329, 366, 405, 446, 489, 534, 581, 630, 681, 734, 789, 846, 905, 966, 1029, 1094, 1161, 1230, 1301, 1374, 1449, 1526, 1605, 1686, 1769, 1854, 1941, 2030, 2121, 2214, 2309, 2406, 2505
Offset: 0

Views

Author

Eric W. Weisstein, Apr 04 2006

Keywords

Crossrefs

Cf. A078402.

Programs

Formula

a(n) = 2*n + a(n-1) - 1 (with a(0)=5). - Vincenzo Librandi, Nov 13 2010
From Colin Barker, Apr 10 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (5-9*x+6*x^2)/(1-x)^3. (End)
From Amiram Eldar, Jul 13 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(5)*Pi*coth(sqrt(5)*Pi))/10.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(5)*Pi*cosech(sqrt(5)*Pi))/10. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = 2*sinh(2*Pi)/(sqrt(5)*sinh(sqrt(5)*Pi)).
Product_{n>=0} (1 + 1/a(n)) = sqrt(6/5)*sinh(sqrt(6)*Pi)/sinh(sqrt(5)*Pi). (End)
E.g.f.: exp(x)*(5 + x + x^2). - Elmo R. Oliveira, Jan 17 2025

A121982 Numbers k such that k^2 + 15 is prime.

Original entry on oeis.org

2, 4, 8, 14, 16, 22, 26, 32, 34, 38, 44, 46, 52, 64, 68, 76, 86, 88, 98, 104, 106, 124, 134, 158, 172, 178, 184, 196, 202, 206, 212, 236, 238, 242, 248, 256, 262, 272, 284, 296, 298, 304, 316, 322, 326, 328, 338, 356, 362, 364, 374, 386, 388, 394, 398, 452, 472
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 09 2006

Keywords

Examples

			If k=104 then k^2 + 15 = 10831 (prime).
		

Crossrefs

Programs

A242333 Numbers k such that k^2 + 5 is a semiprime.

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 14, 18, 21, 22, 24, 26, 27, 28, 30, 33, 42, 44, 51, 54, 57, 58, 62, 63, 64, 68, 69, 82, 84, 86, 90, 93, 98, 99, 102, 104, 108, 111, 118, 132, 134, 138, 144, 152, 154, 156, 166, 174, 177, 180, 183, 184, 186, 188, 189, 194, 208, 210, 212, 216
Offset: 1

Views

Author

Vincenzo Librandi, May 14 2014

Keywords

Comments

The semiprimes of this form are: 6, 9, 14, 21, 69, 86, 201, 329, 446, 489, 581, 681, 734, 789, 905, 1094, 1769, 1941, 2606, 2921, 3254, ...

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [0..300] | IsSemiprime(s) where s is n^2+5];
  • Mathematica
    Select[Range[0, 300], PrimeOmega[#^2 + 5] == 2 &]

A121250 Numbers n such that n^2 + 14 is prime.

Original entry on oeis.org

3, 15, 27, 33, 45, 75, 87, 93, 165, 183, 195, 207, 243, 285, 297, 303, 345, 363, 375, 405, 435, 453, 495, 513, 537, 573, 585, 615, 627, 633, 657, 663, 717, 813, 843, 975, 1053, 1065, 1083, 1095, 1125, 1137, 1167, 1203, 1287, 1317, 1335, 1353, 1413, 1437, 1455
Offset: 1

Author

Parthasarathy Nambi, Sep 06 2006

Keywords

Examples

			If n=183 then n^2 + 14 = 33503 (prime).
		

Programs

A122062 Numbers k such that k^2 + 16 is prime.

Original entry on oeis.org

1, 5, 9, 11, 15, 21, 25, 29, 31, 41, 49, 51, 55, 65, 75, 79, 81, 89, 91, 95, 99, 109, 115, 119, 121, 125, 129, 151, 165, 179, 191, 211, 219, 221, 229, 231, 245, 249, 265, 275, 281, 289, 291, 295, 299, 301, 311, 315, 335, 351, 355, 361, 365, 369, 381, 389, 391
Offset: 1

Author

Parthasarathy Nambi, Sep 14 2006

Keywords

Examples

			If k=99 then k^2 + 16 = 9817 (prime).
		

Programs

A264790 Numbers k such that k^2 + 17 is prime.

Original entry on oeis.org

0, 6, 24, 60, 66, 78, 90, 108, 144, 162, 174, 186, 234, 252, 294, 300, 318, 330, 336, 342, 372, 396, 420, 438, 456, 462, 468, 498, 528, 594, 636, 648, 654, 672, 720, 750, 798, 804, 834, 858, 888, 924, 930, 966, 984, 990, 1014, 1026, 1032, 1086, 1158, 1194, 1200
Offset: 1

Author

Ilya Gutkovskiy, Nov 25 2015

Keywords

Comments

Primes of the form k^2 + 17 have a representation as a sum of 2 squares because they belong to A002144.
All terms are multiple of 6.

Examples

			a(3) = 24 because 24^2 + 17 = 593, which is prime.
		

Crossrefs

Cf. A228244 (associated primes).
Other sequences of the type "Numbers n such that n^2 + k is prime": A005574 (k=1), A067201 (k=2), A049422 (k=3), A007591 (k=4), A078402 (k=5), A114269 (k=6), A114270 (k=7), A114271 (k=8), A114272 (k=9), A114273 (k=10), A114274 (k=11), A114275 (k=12), A113536 (k=13), A121250 (k=14), A121982 (k=15), A122062 (k=16).

Programs

  • Magma
    [n: n in [0..1200 ] | IsPrime(n^2+17)]; // Vincenzo Librandi, Nov 25 2015
  • Mathematica
    Select[Range[0, 1200], PrimeQ[#^2 + 17] &] (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    for(n=0, 1e3, if(isprime(n^2+17), print1(n, ", "))) \\ Altug Alkan, Nov 25 2015
    

Formula

A000005(A241847(a(n))) = 2.
A241847(a(n)) = A228244(n).

Extensions

Edited by Bruno Berselli, Nov 26 2015

A127845 Numbers k such that k^2 + 5 and k^2 + 7 are twin primes.

Original entry on oeis.org

0, 6, 12, 36, 48, 78, 114, 162, 258, 414, 666, 792, 804, 996, 1044, 1206, 1308, 1314, 1356, 1548, 1584, 1632, 1734, 1902, 2106, 2196, 2214, 2346, 2358, 2592, 2634, 2766, 2808, 2868, 2892, 2988, 3072, 3246, 3432, 3516, 3576, 3774, 3894, 3912, 3996, 4038
Offset: 1

Author

Zak Seidov, Apr 05 2007

Keywords

Comments

All terms are multiples of 6. Intersection of A114270 and A078402.

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime(n^2+5) and IsPrime(n^2+7)] // Vincenzo Librandi, Nov 23 2010
  • Maple
    filter:= n -> isprime(n^2+5) and isprime(n^2+7):
    N:= 10000: # to get all entries <= 6*N
    A127845:= select(filter, [6*n $ n=0..N]); # Robert Israel, Apr 17 2014
  • Mathematica
    Select[Range[0,5000,6],AllTrue[#^2+{5,7},PrimeQ]&] (* Harvey P. Dale, May 25 2023 *)
Previous Showing 11-19 of 19 results.