cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 88 results. Next

A084476 Least k such that 10^(2n-1)+k is a brilliant number.

Original entry on oeis.org

0, 3, 13, 43, 81, 147, 73, 3, 831, 49, 987, 691, 183, 4153, 279, 667, 709, 277, 1687, 997, 1207, 91, 1411, 393, 951, 9793, 2217, 6229, 2317, 213, 399, 19, 2317, 609, 2607, 11901, 10563, 5473, 3, 5923, 17527, 8569, 16701, 11989, 9757, 6489, 3489, 2899
Offset: 1

Views

Author

Robert G. Wilson v, Jun 27 2003

Keywords

Comments

Least brilliant number greater than 10^(2n) is {10^n+A033873(n)}^2. The web site also lists the two prime factors.

Examples

			a(3)=13 because 10^5+13 = 100013 = 103*971.
		

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; LengthBase10[n_] := Floor[ Log[10, n] + 1]; f[n_] := Block[{k = 0}, If[ EvenQ[n] && n > 1, NextPrim[ 10^(n/2)]^2 - 10^(n/2), While[fi = FactorInteger[10^n + k]; Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ fi] != 2 || Length[ Union[ LengthBase10 /@ Flatten[ Table[ # [[1]], {1}] & /@ fi]]] != 1, k++ ]; k]]; Table[ f[2n + 1], {n, 1, 24}]

A087434 Number of brilliant numbers whose prime factors each have n digits.

Original entry on oeis.org

10, 231, 10296, 563391, 34974066, 2374052871, 171745762321, 12989075028126, 1016377282340160, 81690831917887753, 6708792934060150753, 560785267822390134615, 47573053155260626453431
Offset: 1

Views

Author

Ray Chandler, Sep 02 2003

Keywords

Comments

Number of brilliant numbers having 2n or 2n-1 digits.

Crossrefs

Programs

Formula

a(n)=A000217(A006879(n)).

Extensions

a(14) from Ray Chandler, Jul 21 2005

A121898 Triangular numbers that are sandwiched between two semiprimes; or triangular numbers t such that t-1 and t+1 are both semiprime.

Original entry on oeis.org

120, 300, 528, 780, 2628, 3240, 3828, 5460, 13530, 18528, 19110, 22578, 25878, 31878, 32640, 37128, 49770, 56280, 64980, 72390, 73920, 78210, 103740, 105570, 115440, 137550, 159330, 161028, 277140, 288420, 316410, 335790, 370230, 386760
Offset: 1

Views

Author

Jason Earls, Sep 01 2006

Keywords

Comments

Why are so many of the t-1's brilliant numbers (A078972)?

Programs

  • Mathematica
    Select[Accumulate[Range[1000]],PrimeOmega[#-1]==PrimeOmega[#+1]==2&] (* Harvey P. Dale, Jul 06 2014 *)

A083284 Numbers m such that m and m+2 are both brilliant numbers, where brilliant numbers are semiprimes whose prime factors have an equal number of decimal digits, or whose prime factors are equal.

Original entry on oeis.org

4, 527, 779, 869, 899, 1079, 1157, 1271, 1679, 4187, 6497, 6887, 24287, 24881, 25019, 29591, 35237, 37127, 37769, 38807, 39269, 39911, 41309, 43361, 44831, 45347, 46001, 46127, 47261, 48509, 48929, 51809, 52907, 54389, 55481, 55751, 55961
Offset: 1

Views

Author

Jason Earls, Jun 03 2003

Keywords

Comments

The only consecutive brilliant numbers are {9, 10} and {14, 15}; and for m > 14 there are no brilliant constellations of the form {m, m+(2k+1)} or equivalently {n, 2k+m+1} with k >= 0. Proof: One of m and 2k+m+1 will be even. And there are no even brilliant numbers > 14 since they must have the form 2*p where p is a prime having only one digit.

Examples

			a(3) = 779 because 779=19*41 and 781=11*71.
		

Crossrefs

Cf. A078972.

A085647 Semiprimes whose prime factors p*q have an equal number of decimal digits and p is not equal to q.

Original entry on oeis.org

6, 10, 14, 15, 21, 35, 143, 187, 209, 221, 247, 253, 299, 319, 323, 341, 377, 391, 403, 407, 437, 451, 473, 481, 493, 517, 527, 533, 551, 559, 583, 589, 611, 629, 649, 667, 671, 689, 697, 703, 713, 731, 737, 767, 779, 781, 793, 799, 803, 817, 851, 869, 871
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    spddQ[n_]:=Module[{fi=FactorInteger[n][[All,1]]},PrimeOmega[n]==2 && fi[[2]]- fi[[1]]>0&&IntegerLength[fi[[1]]]==IntegerLength[fi[[2]]]]; Select[Range[900],spddQ]//Quiet (* Harvey P. Dale, Jul 14 2021 *)
  • Python
    from sympy import sieve
    A085647 = []
    for n in range(3):
        pr = list(sieve.primerange(10**n,10**(n+1)))
        for i,p in enumerate(pr,start=1):
            for q in pr[i:]:
                A085647.append(p*q)
    A085647 = sorted(A085647)
    # Chai Wah Wu, Aug 26 2014

A086846 Number of brilliant numbers < 10^n.

Original entry on oeis.org

3, 10, 73, 241, 2504, 10537, 124363, 573928, 7407840, 35547994, 491316166, 2409600865, 34896253009, 174155363186, 2601913448896, 13163230391312, 201431415980418, 1029540512731472
Offset: 1

Views

Author

Jason Earls, Aug 09 2003

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(N=10^n-1, count=0, L=#digits(sqrtint(N))); for(k=1, L-1, count += binomial(primepi(10^k) - primepi(10^(k-1)) + 1, 2)); my(min = 10^(L-1), max = 10^L-1, pi_min = primepi(min), pi_max = primepi(max), j = 0); forprime(p = min, max, if(p*p <= N, count += if(N >= p*max, pi_max, primepi(N\p)) - pi_min - j; j+=1, break)); count; \\ Daniel Suteu, Apr 09 2022

Extensions

More terms from Ray Chandler, Aug 31 2003
a(11)-a(14) from Ray Chandler, Jul 21 2005
a(15)-a(16) from Donovan Johnson, May 30 2010
a(17)-a(18) from Daniel Suteu, Apr 09 2022

A087435 Partial sums of A087434.

Original entry on oeis.org

10, 241, 10537, 573928, 35547994, 2409600865, 174155363186, 13163230391312, 1029540512731472, 82720372430619225, 6791513306490769978, 567576781128880904593, 48140629936389507358024
Offset: 1

Views

Author

Ray Chandler, Sep 02 2003

Keywords

Comments

Number of brilliant numbers <10^2n.
Bisection of A086846.

Crossrefs

Extensions

a(14) from Ray Chandler, Jul 21 2005

A132435 Composite integers n with two prime factors nearly equidistant from the integer part of the square root of n.

Original entry on oeis.org

4, 6, 9, 10, 14, 22, 25, 35, 49, 55, 65, 77, 85, 91, 119, 121, 143, 169, 187, 209, 221, 247, 253, 289, 299, 319, 323, 361, 377, 391, 407, 437, 493, 527, 529, 551, 589, 629, 667, 697, 703, 713, 841, 851, 899, 943, 961, 989, 1073, 1081, 1147, 1189
Offset: 1

Views

Author

Andrew S. Plewe, Nov 13 2007

Keywords

Comments

An integer n is included if, for some value y >= 0: n = A007918(A000196(n) + y) * A007918(A000196(n) - y) Or: n = nextprime(sqrtint(n) + y) * nextprime(sqrtint(n) - y) Where "nextprime(x)" is the smallest prime number >= to x and "sqrtint(z)" is the integer part of the square root of z.
Has many terms in common with A078972. - Bill McEachen, Dec 24 2020

Examples

			25 = nextprime(5 + 0) * nextprime(5 - 0) = 5 * 5 = 25
35 = nextprime(5 + 1) * nextprime(5 - 1) = 7 * 5 = 35
119 = nextprime(10 + 4) * nextprime(10 - 4) = 17 * 7 = 119
		

Crossrefs

Programs

  • PARI
    bal(x,y) = nextprime(sqrtint(x)+y) * nextprime(sqrtint(x)-y);
    findbal(x) = local(z,y); z=sqrtint(x); while( 0<=z, y=bal(x,z); if(y==x, print1(x", ");break;); z--;);
    for (n=1,1200, findbal(n));

A199009 Composite numbers whose prime factors have an equal number of digits in decimal representation.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 135, 140, 143, 144, 147, 150, 160, 162, 168, 169, 175, 180
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 01 2011

Keywords

Examples

			42 = 2*3*7 belongs to this sequence, since its prime factors all have one digit.
		

Crossrefs

Supersequence of A078972 and of A182301.

Programs

  • Mathematica
    f[n_] := Length[Union[Length /@ IntegerDigits /@ Transpose[FactorInteger[n]][[1]]]] == 1; Select[Range[2, 180], ! PrimeQ[#] && f[#] &] (* T. D. Noe, Nov 01 2011 *)

A218172 Centered 12-gonal numbers which are semiprimes, intersection of A003154 and A001358.

Original entry on oeis.org

121, 253, 793, 1261, 1441, 1633, 1837, 2773, 3601, 3901, 4213, 4537, 4873, 5221, 7141, 9841, 11881, 14113, 14701, 16537, 17173, 17821, 19153, 19837, 21241, 22693, 23437, 24193, 24961, 28153, 28981, 29821, 30673, 34201, 37921, 38881, 39853, 40837, 41833, 43861, 45937, 48061, 49141, 50233, 53581, 55873
Offset: 1

Views

Author

Zak Seidov, Oct 22 2012

Keywords

Comments

Might also be called 'semiprime star numbers'.
A083749 and A006061 are subsequences.

Examples

			a(1) = 121 = 11^2 = A001358(40) = A003154(5) = A083749(1) = A006061(1) = A078972(11).
a(2) = 253 = 11*23 = A001358(81) = A003154(7) = A083749(2) = A078972(18).
		

Crossrefs

Programs

  • Mathematica
    Select[Table[6n(n-1)+1,{n,100}],PrimeOmega[#]==2&] (* Harvey P. Dale, Sep 01 2014 *)
  • PARI
    lista(nn) = {for (n = 1, nn, if (bigomega(v = 6*n*(n-1) + 1) == 2, print1(v, ", ")););} \\ Michel Marcus, Nov 09 2013
Previous Showing 51-60 of 88 results. Next