cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A132593 Nonnegative integer solutions X to the equation: X(X + 1) - 10*Y^2 = 0.

Original entry on oeis.org

0, 9, 360, 13689, 519840, 19740249, 749609640, 28465426089, 1080936581760, 41047124680809, 1558709801289000, 59189925324301209, 2247658452522156960, 85351831270517663289, 3241121929827149048040, 123077281502161146162249
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 14 2007

Keywords

Comments

Also, numbers n such that 5*A000217(n) is a square. [Bruno Berselli, Dec 16 2013]

Crossrefs

Cf. A233474 (numbers n such that 5*A000217(n)-1 is a square).

Programs

  • Mathematica
    LinearRecurrence[{39,-39,1},{0,9,360},30] (* Harvey P. Dale, Jun 01 2014 *)

Formula

a(0)=0, a(1)=9 and a(n) = 38*a(n-1) - a(n-2) + 18.
a(n) = (A078986(n) - 1)/2. - Max Alekseyev, Nov 13 2009
G.f.: -9*x*(x+1)/((x-1)*(x^2-38*x+1)). - Colin Barker, Oct 24 2012
From Amiram Eldar, Feb 15 2022: (Start)
sqrt(a(n)+1) - sqrt(n) = (sqrt(10)-3)^n (Wilke, 1977).
a(n) = ((Sum_{k=0..n} binomial(2*n, 2*k) * 10^(n-k) * 9*k)- 1)/2 (Klamkin, 1978).
a(n) = sinh(n*log(sqrt(10)+3))^2 (MaScoT Problems Group, 1980). (End)

Extensions

More terms from Max Alekseyev, Nov 13 2009

A207832 Numbers x such that 20*x^2 + 1 is a perfect square.

Original entry on oeis.org

0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0

Views

Author

Gary Detlefs, Feb 20 2012

Keywords

Comments

Denote as {a,b,c,d} the second-order linear recurrence a(n) = c*a(n-1) + d*a(n-2) with initial terms a, b. The following sequences and recurrence formulas are related to integer solutions of k*x^2 + 1 = y^2.
.
k x y
- ----------------------- -----------------------
2 A001542 {0,2,6,-1} A001541 {1,3,6,-1}
3 A001353 {0,1,4,-1} A001075 {1,2,4,-1}
5 A060645 {0,4,18,-1} A023039 {1,9,18,-1}
6 A001078 {0,2,10,-1} A001079 {1,5,10,-1}
7 A001080 {0,3,16,-1} A001081 {1,8,16,-1}
8 A001109 {0,1,6,-1} A001541 {1,3,6,-1}
10 A084070 {0,1,38,-1} A078986 {1,19,38,-1}
11 A001084 {0,3,20,-1} A001085 {1,10,20,-1}
12 A011944 {0,2,14,-1} A011943 {1,7,14,-1}
13 A075871 {0,180,1298,-1} A114047 {1,649,1298,-1}
14 A068204 {0,4,30,-1} A069203 {1,15,30,-1}
15 A001090 {0,1,8,-1} A001091 {1,4,8,-1}
17 A121740 {0,8,66,-1} A099370 {1,33,66,-1}
18 A202299 {0,4,34,-1} A056771 {1,17,34,-1}
19 A174765 {0,39,340,-1} A114048 {1,179,340,-1}
20 a(n) {0,2,18,-1} A023039 {1,9,18,-1}
21 A174745 {0,12,110,-1} A114049 {1,55,110,-1}
22 A174766 {0,42,394,-1} A114050 {1,197,394,-1}
23 A174767 {0,5,48,-1} A114051 {1,24,48,-1}
24 A004189 {0,1,10,-1} A001079 {1,5,10,-1}
26 A174768 {0,10,102,-1} A099397 {1,51,102,-1}
The sequence of the c parameter is listed in A180495.

Crossrefs

Programs

  • Magma
    m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
    
  • Maple
    readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
  • Mathematica
    LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
    Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}]  (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */

Formula

a(n) = 18*a(n-1) - a(n-2).
From Bruno Berselli, Feb 21 2012: (Start)
G.f.: 2*x/(1-18*x+x^2).
a(n) = -a(-n) = 2*A049660(n) = ((2 + sqrt(5))^(2*n)-(2 - sqrt(5))^(2*n))/(4*sqrt(5)). (End)
a(n) = Fibonacci(6*n)/4. - Bruno Berselli, Jun 19 2019
For n>=1, a(n) = A079962(6n-3). - Christopher Hohl, Aug 22 2021

A248834 The numerator of curvature of touching circles inscribed in a special way in the smaller segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).

Original entry on oeis.org

15, 25, 245, 3025, 39605, 525625, 6997445, 93219025, 1242045605, 16549536025, 220514700245, 2938258798225, 39150987330005, 521669482807225, 6951013841444645, 92619168339300625, 1234109231890228805, 16443956730548563225, 219108411138085022645, 2919522145350504838225
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 15 2014

Keywords

Comments

Refer to comment of A240926. Consider a circle C of radius 1/6 (in some length units) with a chord of length sqrt(8/75). This has been chosen such that the smaller sagitta has length 2/15. The input, besides the circle C, is the circle C_0 with radius R_0 = 1/15, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n). The denominator is A000244 for n > 0. If one considers the curvature of touching circles inscribed in the larger segment (sagitta length 1/5), the sequence would be A248833. See an illustration given in the link.

Crossrefs

Programs

  • PARI
    {
    r=0.4;print1(round(6/r),", ");r1=r;dn=1;
    for (n=1,40,
    if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
    ac=sqrt(ab^2-r^2);
    if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
    b=acos(r/ab)-z;
    r=r*(1-cos(b))/(1+cos(b));
    print1(round((6/r)*dn),", ");
    dn=dn*3
    )
    }

Formula

Conjecture: a(n) = 17*a(n-1) - 51*a(n-2) + 27*a(n-3) for n > 3. - Colin Barker, Oct 15 2014
Empirical g.f.: 5*(54*x^3-117*x^2+46*x-3) / ((3*x-1)*(9*x^2-14*x+1)). - Colin Barker, Oct 15 2014

A249458 The numerators of curvatures of touching circles inscribed in a special way in the smaller segment of unit circle divided by a chord of length sqrt(84)/5.

Original entry on oeis.org

10, 100, 1690, 36100, 835210, 19802500, 472931290, 11318832100, 271066588810, 6492762648100, 155527144782490, 3725543446072900, 89243180863948810, 2137770243127864900, 51209104645650371290, 1226685938180259902500
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 29 2014

Keywords

Comments

The denominators are conjectured to be A169634.
Refer to comments and links of A240926. Consider a unit circle with a chord of length sqrt(84)/5. This has been chosen such that the smaller sagitta has length 3/5. The input, besides the circle C, is the circle C_0 with radius R_0 = 3/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n). If one considers the curvature of touching circles inscribed in the larger segment (sagitta length 7/5), the sequence would be A249457/A005032. See an illustration given in the link.
For the proof and the formula for the rational curvatures of the circles in the smaller segment see a comment under A249864. C_n = (5/(3*7))*(7*S(n, 26/7) - 13*S(n-1, 26/7) + 7), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Nov 08 2014

Crossrefs

Programs

  • Magma
    I:=[10, 100, 1690]; [n le 3 select I[n] else 33*Self(n-1) - 231*Self(n-2) + 343*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{33, -231, 343},{10, 100, 1690},16] (* Ray Chandler, Aug 11 2015 *)
    CoefficientList[Series[10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.3;dn=3;print1(round(dn/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b)); dn=dn*7;
         print1(round(dn/r),", ");
    )
    }
    
  • PARI
    x='x+O('x^30); Vec(10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x))) \\ G. C. Greubel, Dec 20 2017
    

Formula

Empirical g.f.: -10*(70*x^2-23*x+1) / ((7*x-1)*(49*x^2-26*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 09 2014 (Start)
a(n) = 5*(A249864(n) + 7^n) = (5*7^n)*(S(n, 26/7) - (13/7)*S(n-1, 26/7) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249864 for the proof.
O.g.f.: 5*((1 - 13*x)/(1 - 26*x + (7*x)^2) + 1/(1-7*x)) = 10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)) proving the conjecture of Colin Barker above. (End)

Extensions

Edited. In name and comment small changes, keyword easy and crossrefs added. - Wolfdieter Lang, Nov 08 2014

A239364 Numbers n such that (n^2-4)/10 is a square.

Original entry on oeis.org

38, 1442, 54758, 2079362, 78960998, 2998438562, 113861704358, 4323746327042, 164188498723238, 6234839205156002, 236759701297204838, 8990633810088627842, 341407325082070653158, 12964487719308596192162, 492309126008644584648998, 18694782300609185620469762
Offset: 1

Views

Author

Colin Barker, Mar 17 2014

Keywords

Comments

Values of x satisfying the Pellian equation x^2 - 10*y^2 = 4.

Examples

			1442 is in the sequence because (1442^2-4)/10 = 207936 = 456^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{38,-1},{38,1442},30] (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    Vec(-2*x*(x-19)/(x^2-38*x+1) + O(x^100))

Formula

a(n) = 2*A078986(n).
a(n) = (19+6*sqrt(10))^(-n)+(19+6*sqrt(10))^n.
a(n) = 38*a(n-1)-a(n-2).
G.f.: -2*x*(x-19) / (x^2-38*x+1).

A248833 The curvature of touching circles inscribed in a special way in the larger segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).

Original entry on oeis.org

10, 25, 160, 1225, 9610, 75625, 595360, 4687225, 36902410, 290532025, 2287353760, 18008298025, 141779030410, 1116223945225, 8788012531360, 69187876305625, 544714997913610, 4288532107003225, 33763541858112160, 265819802757894025, 2092794880205040010, 16476539238882426025
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 15 2014

Keywords

Comments

Refer to comment of A240926. Consider a circle C of radius 1/6 (in some length units) with a chord of length sqrt(8/75). This has been chosen such that the larger sagitta has length 1/5. The input, besides the circle C, is the circle C_0 with radius R_0 = 1/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle, C_n = 1/R_n, n >= 0, is conjectured to be a(n). If one considers the curvature of touching circles inscribed in the smaller segment (sagitta length 2/15), the sequence would be A248834. See an illustration given in the link.

Crossrefs

Programs

  • Magma
    I:=[10,25,160]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 29 2014
  • Mathematica
    CoefficientList[Series[- 5 (5 x^2 - 13 x + 2)/((x - 1) (x^2 - 8 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2014 *)
    LinearRecurrence[{9,-9,1}, {10,25,160}, 30] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.6;print1(round(6/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b));
         print1(round(6/r),", ");
    )
    }
    
  • PARI
    Vec(-5*(5*x^2-13*x+2)/((x-1)*(x^2-8*x+1)) + O(x^100)) \\ Colin Barker, Oct 15 2014
    

Formula

From Colin Barker, Oct 15 2014: (Start)
a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3).
G.f.: -5*(5*x^2-13*x+2) / ((x-1)*(x^2-8*x+1)). (End)
a(n) = 5*(2+(4-sqrt(15))^n+(4+sqrt(15))^n)/2. - Colin Barker, Mar 03 2016
E.g.f.: 5*exp(x)*(1 + exp(3*x)*cosh(sqrt(15)*x)). - Stefano Spezia, Aug 27 2025

A343034 Positive numbers m such that m^2 with last digit z deleted is still a perfect square k^2, and z divides m-k.

Original entry on oeis.org

1, 13, 19, 487, 721, 18493, 27379, 702247, 1039681, 26666893, 39480499, 1012639687, 1499219281, 38453641213, 56930852179, 1460225726407, 2161873163521, 55450123962253, 82094249361619, 2105644484839207, 3117419602578001, 79959040299927613, 118379850648602419, 3036337886912410087
Offset: 1

Views

Author

Bernard Schott, Apr 03 2021

Keywords

Comments

This sequence is the answer to the problem A1872 proposed on French mathematical site Diophante (see link).
Equivalent to the two Diophantine equations: m^2 = 10*k^2 + z and m-k = q*z for some q >= 1.
There exist solutions iff z = 1 or z = 9.
When (m, k, z) is a solution, then (19m+60k, 6m+19k, z) is another solution.
There is only one solution such that z = m-k: (13, 4, 9), see 1st example.
There exist two distinct families of solutions corresponding to z = 1 and z = 9, odd indices correspond to z = 1 and even indices to z = 9.
-> For z = 1, all solutions m of Pell equation m^2 - 10*k^2 = 1 are terms because z = 1 divides every m-k.
First few solutions (m, k) are (1, 0), (19, 6), (721, 228), (27379, 86568), ... with m = A078986(q) and corresponding k = 6*A078987(q).
-> For z = 9, solutions m must satisfy m^2 - 10*k^2 = 9 with 9 divides m-k. Among the 3 fundamental solutions (3, 0), (7, 2), (13, 4) of Pell equation m^2 -10*k^2 = 9, only (13, 4) gives solutions where 9 divides m-k.
First few solutions (m, k) are (13, 4), (487, 154), (18493, 5848), ... with m = A228209(3q).

Examples

			For m = 13, 13^2 = 169, 4^2 = 16, 13^2 - 10*4^2 = 9 and 9 = 13-4 divides 13-4.
For m = 19, 19^2 = 361, 6^2 = 36, 19^2 - 10*6^2 = 1 and 1 divides 19-6 = 13.
For m = 487, 487^2 = 237169, 154^2 = 23716, 487^2 - 10*154^2 = 9 and 9 divides 487-154 = 333 = 9*37.
		

Crossrefs

Subsequence of A031149.
A078986 is a subsequence.

Programs

  • Mathematica
    LinearRecurrence[{0, 38, 0, -1}, {1, 13, 19, 487}, 24] (* Amiram Eldar, Apr 03 2021 *)

Formula

a(2n+1) = A078986(n) for n >= 0.
a(2n) = A228209(3n) for n >= 1.
a(n+4) = 38*a(n+2) - a(n), a(1) = 1, a(2) = 13, a(3)= 19, a(4) = 487.
G.f.: x*(1 + 13*x - 19*x^2 - 7*x^3)/(1 - 38*x^2 + x^4). - Stefano Spezia, Apr 03 2021
Previous Showing 11-17 of 17 results.