A132593
Nonnegative integer solutions X to the equation: X(X + 1) - 10*Y^2 = 0.
Original entry on oeis.org
0, 9, 360, 13689, 519840, 19740249, 749609640, 28465426089, 1080936581760, 41047124680809, 1558709801289000, 59189925324301209, 2247658452522156960, 85351831270517663289, 3241121929827149048040, 123077281502161146162249
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Kenneth M. Wilke, Problem 269, Crux Mathematicorum, Vol. 3, No. 7 (1977), p. 190; Solution to Problem 269 by Lindsay Reynolds, W. J. Blundon and M. S. Klamkin, ibid., Vol. 4, No. 3 (1978), pp. 79-82; Comment by the MaScoT Problems Group, ibid., Vol. 6, No. 2 (1980), pp. 44-46.
- Index entries for linear recurrences with constant coefficients, signature (39,-39,1).
-
LinearRecurrence[{39,-39,1},{0,9,360},30] (* Harvey P. Dale, Jun 01 2014 *)
A207832
Numbers x such that 20*x^2 + 1 is a perfect square.
Original entry on oeis.org
0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..500
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
-
m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
-
readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
-
LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}] (* Herbert Kociemba, Jun 05 2022 *)
-
makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */
A248834
The numerator of curvature of touching circles inscribed in a special way in the smaller segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).
Original entry on oeis.org
15, 25, 245, 3025, 39605, 525625, 6997445, 93219025, 1242045605, 16549536025, 220514700245, 2938258798225, 39150987330005, 521669482807225, 6951013841444645, 92619168339300625, 1234109231890228805, 16443956730548563225, 219108411138085022645, 2919522145350504838225
Offset: 0
-
{
r=0.4;print1(round(6/r),", ");r1=r;dn=1;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b));
print1(round((6/r)*dn),", ");
dn=dn*3
)
}
A249458
The numerators of curvatures of touching circles inscribed in a special way in the smaller segment of unit circle divided by a chord of length sqrt(84)/5.
Original entry on oeis.org
10, 100, 1690, 36100, 835210, 19802500, 472931290, 11318832100, 271066588810, 6492762648100, 155527144782490, 3725543446072900, 89243180863948810, 2137770243127864900, 51209104645650371290, 1226685938180259902500
Offset: 0
Cf.
A240926,
A078986,
A097315,
A247512,
A247335,
A247512,
A248834,
A169634,
A249457,
A049310,
A249863,
A249864.
-
I:=[10, 100, 1690]; [n le 3 select I[n] else 33*Self(n-1) - 231*Self(n-2) + 343*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
LinearRecurrence[{33, -231, 343},{10, 100, 1690},16] (* Ray Chandler, Aug 11 2015 *)
CoefficientList[Series[10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
-
{
r=0.3;dn=3;print1(round(dn/r),", ");r1=r;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b)); dn=dn*7;
print1(round(dn/r),", ");
)
}
-
x='x+O('x^30); Vec(10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x))) \\ G. C. Greubel, Dec 20 2017
Edited. In name and comment small changes, keyword easy and crossrefs added. -
Wolfdieter Lang, Nov 08 2014
A239364
Numbers n such that (n^2-4)/10 is a square.
Original entry on oeis.org
38, 1442, 54758, 2079362, 78960998, 2998438562, 113861704358, 4323746327042, 164188498723238, 6234839205156002, 236759701297204838, 8990633810088627842, 341407325082070653158, 12964487719308596192162, 492309126008644584648998, 18694782300609185620469762
Offset: 1
1442 is in the sequence because (1442^2-4)/10 = 207936 = 456^2.
- Colin Barker, Table of n, a(n) for n = 1..600
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Index entries for linear recurrences with constant coefficients, signature (38,-1).
-
LinearRecurrence[{38,-1},{38,1442},30] (* Harvey P. Dale, Dec 19 2014 *)
-
Vec(-2*x*(x-19)/(x^2-38*x+1) + O(x^100))
A248833
The curvature of touching circles inscribed in a special way in the larger segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).
Original entry on oeis.org
10, 25, 160, 1225, 9610, 75625, 595360, 4687225, 36902410, 290532025, 2287353760, 18008298025, 141779030410, 1116223945225, 8788012531360, 69187876305625, 544714997913610, 4288532107003225, 33763541858112160, 265819802757894025, 2092794880205040010, 16476539238882426025
Offset: 0
-
I:=[10,25,160]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 29 2014
-
CoefficientList[Series[- 5 (5 x^2 - 13 x + 2)/((x - 1) (x^2 - 8 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2014 *)
LinearRecurrence[{9,-9,1}, {10,25,160}, 30] (* G. C. Greubel, Dec 20 2017 *)
-
{
r=0.6;print1(round(6/r),", ");r1=r;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b));
print1(round(6/r),", ");
)
}
-
Vec(-5*(5*x^2-13*x+2)/((x-1)*(x^2-8*x+1)) + O(x^100)) \\ Colin Barker, Oct 15 2014
A343034
Positive numbers m such that m^2 with last digit z deleted is still a perfect square k^2, and z divides m-k.
Original entry on oeis.org
1, 13, 19, 487, 721, 18493, 27379, 702247, 1039681, 26666893, 39480499, 1012639687, 1499219281, 38453641213, 56930852179, 1460225726407, 2161873163521, 55450123962253, 82094249361619, 2105644484839207, 3117419602578001, 79959040299927613, 118379850648602419, 3036337886912410087
Offset: 1
For m = 13, 13^2 = 169, 4^2 = 16, 13^2 - 10*4^2 = 9 and 9 = 13-4 divides 13-4.
For m = 19, 19^2 = 361, 6^2 = 36, 19^2 - 10*6^2 = 1 and 1 divides 19-6 = 13.
For m = 487, 487^2 = 237169, 154^2 = 23716, 487^2 - 10*154^2 = 9 and 9 divides 487-154 = 333 = 9*37.
-
LinearRecurrence[{0, 38, 0, -1}, {1, 13, 19, 487}, 24] (* Amiram Eldar, Apr 03 2021 *)
Comments